anonymous
  • anonymous
How to solve this type of sequence? 1)The sequence given is: 〖(a_n)〗_(n ϵ N) , such as: a_1= 1/3 for every n ϵ N , a_(n+1)=(2n+1)/(4n+3) a_n. Find a_3 ? Considering the fact that every monotone decreasing and bounded in sequence is a convergent sequence, show that the sequence 〖(a_n)〗_(n ϵ N) is a convergent sequence. Find lim┬(n→∞)⁡〖a_n 〗
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Loser66
  • Loser66
Why do you go to a complicated way? just plug n =1,2 into the given equation and you get \(a_3\)
Loser66
  • Loser66
\(a_{n+1}= \dfrac{2n+1}{(4n+3)a_n}\) If n =1, then \(a_{n+1}= a_{1+1}= a_2 =\dfrac{2*1+1}{(4*1+3)a_1}\)
Loser66
  • Loser66
repeat with n =2, you get a3

Looking for something else?

Not the answer you are looking for? Search for more explanations.