Mindblast3r
  • Mindblast3r
help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mindblast3r
  • Mindblast3r
\[r^2=\frac{ 9 }{ 2 }\]
Mindblast3r
  • Mindblast3r
\[r=\frac{ 3\sqrt2 }{ 2 }\]
Mindblast3r
  • Mindblast3r
How did 9 become,

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mindblast3r
  • Mindblast3r
\[3\sqrt2\]
Nnesha
  • Nnesha
got it okay so you have to take square root both sides to cancel out the square
Nnesha
  • Nnesha
\[\huge\rm \sqrt{r^2}=\sqrt{\frac{ 9 }{ 2 }}\] square root both sides
Nnesha
  • Nnesha
\[\sqrt{r^2} = r \] square root cancels with the square because when you convert square root to exponent you will get \[\huge\rm \sqrt{r^2} = r^\frac{ \cancel{2} }{\cancel{ 2} }\] according to this exponent rule \[\large\rm \sqrt[n]{x^m} = x^\frac{ m }{ n }\]
Nnesha
  • Nnesha
now solve right side \[\sqrt{\frac{ 9 }{ 2 }}\] is same as square root of 9 and 2 \[\sqrt{\frac{ 9 }{ 2 }}=\frac{ \sqrt{9} }{ \sqrt{2} }\] you can't have the radical sign at the denominator of the fraction so that's why multiply both the denominator and numerator of the fraction by sqrt{2}(denominator)
Mindblast3r
  • Mindblast3r
ohh right i get it now!
Nnesha
  • Nnesha
(multiply top and bottom of the fraction by the denominator which is sqrt{2}_
Nnesha
  • Nnesha
u sure ? :)
Mindblast3r
  • Mindblast3r
yes let me show you.
Nnesha
  • Nnesha
okay :)
Mindblast3r
  • Mindblast3r
\[\sqrt{r^2} =\frac{ \sqrt9 }{ \sqrt2 }\]
Mindblast3r
  • Mindblast3r
sec
Mindblast3r
  • Mindblast3r
\[r=\frac{ 3 }{ \sqrt2^\frac{ 1 }{ 2 } }\times \frac{ \sqrt2 }{ \sqrt2\frac{ 1 }{ 2 } }\]
Mindblast3r
  • Mindblast3r
\[r=\frac{ 3\sqrt2 }{ 2 }\]
Nnesha
  • Nnesha
so why did you write sqr{2} to the 1/2 power ?
Mindblast3r
  • Mindblast3r
are you testing me, or you don't know why?
Nnesha
  • Nnesha
hahah i'm asking a question :)
Nnesha
  • Nnesha
actually i don't know why did you write square root AND 1/2 power
Mindblast3r
  • Mindblast3r
i actually don't know how it works..
Mindblast3r
  • Mindblast3r
but i know it's correct.
Nnesha
  • Nnesha
no \[\huge\rm \sqrt{x} = x^\frac{ 1 }{ 2 }\] 1/2 is same as square root of something
Nnesha
  • Nnesha
you can write \[\frac{ }{ 2^\frac{ 1 }{ 2 } \times 2^\frac{ 1 }{ 2 }}\] then you don't need to write square root
Mindblast3r
  • Mindblast3r
hmm
Mindblast3r
  • Mindblast3r
w8 w8 w8
Mindblast3r
  • Mindblast3r
i remember who told me this i will link you to the question.
Nnesha
  • Nnesha
don't get it ? it's okay so this is the exponent rule \[\sqrt[n]{x^m}=x^\frac{m }{ n}\]
Mindblast3r
  • Mindblast3r
oh wait i think i get it
Nnesha
  • Nnesha
so square root of sqrt{2} is 2^1/2 power \[\huge\rm \sqrt{2} = 2^\frac{ 1 }{ 2 }\] when you changed to exponent form then you don't need square root
Mindblast3r
  • Mindblast3r
oh right!! you are right lol.
Mindblast3r
  • Mindblast3r
the guy told me the same thing you're telling me now! sorry!!!!
Nnesha
  • Nnesha
ye same thing \[\sqrt{3}=3^\frac{ 1 }{ 3 }\]
Nnesha
  • Nnesha
it's okay :)
Mindblast3r
  • Mindblast3r
1/3? you mean 1/2?
Nnesha
  • Nnesha
2 i did type 2 or is it 3 o.O
Mindblast3r
  • Mindblast3r
its 3 lol.
Nnesha
  • Nnesha
\(\color{blue}{\text{Originally Posted by}}\) @Nnesha ye same thing \[\sqrt{3}=3^\frac{ 1 }{ 3 }\] \(\color{blue}{\text{End of Quote}}\) \[\huge\rm \sqrt{3}=3^\frac{ 1 }{ 3 }\] ohh i see now yea i meant 2 :)
Mindblast3r
  • Mindblast3r
lol ok thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.