find y' : y = sin (x+y) ( i have the answer but i need the solution thanks)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find y' : y = sin (x+y) ( i have the answer but i need the solution thanks)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Implicit differentiation\[y = \sin \left( x + y \right)\]Differentiate both side wrt \(x\)\[\frac{ dy }{ dx } = \frac{ d }{ dx } \sin \left( x+y \right)\]Chain rule\[\frac{ dy }{ dx } = \cos \left( x + y \right) \left( 1 + \frac{ dy }{ dx } \right)\]Expand right hand side and solve for \(\frac{dy}{dx}\)
damn chain rule! thanks. hey can you show me how you would expand the right hand side? i was told i need to put all the dy/dx on one side etc etc. may you show me how would you do it thanks
and i have another question if you dont mind. haha. but it can be for later. haha

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Sure. \[\frac{ dy }{ dx } = \cos(x + y)\left( 1 + \frac{ dy }{ dx } \right)\]\[\frac{ dy }{ dx } = \cos \left( x + y \right) + \frac{ dy }{ dx }\cos \left( x + y \right)\]\[\frac{ dy }{ dx } - \frac{ dy }{ dx }\cos \left( x + y \right) = \cos \left( x + y \right)\]\[\frac{ dy }{ dx }\left( 1-\cos \left( x+y \right) \right) = \cos \left( x + y \right)\]Can you take it from here?
ooh! yes yes thanks i see it now. wait i have to ask, can i, in a way, 'adjust' the first equation given? or is it to be differentiated as it was?
Not that I'm aware of. I think the problem is for you to practice implicit differentiation just as it is given.
ok. thanks again!
You're welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question