AmberlyKhan
  • AmberlyKhan
All exponent rules? Adding, subtracting, multiplying, dividing, etc...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
You can only add and subtract like terms, meaning each term has the same variables to the same power. For example you can add and subtract \(2x^4\) and \(-6x^4\) by adding or subtracting the coefficients and leaving the exponents the same. Addition \[2x^4+(-6x^4)=-4x^4\] Subtraction \[2x^4-(-6x^4)=8x^4\]
anonymous
  • anonymous
With multiplication and division, the exponents change. Multiplication (multiply coefficients, add exponents) \[x^mx^n=x^{m+n}\] Example \[(8x^5y^7)(4x^3y^2)=32x^{5+3}y^{7+2}=32x^8y^9\] Division (divide coefficients, subtract exponents) \[\frac{ x^m }{ x^n }=x^{m-n}\] Example\[\frac{ 8x^5y^7 }{ 4x^3y^2 }=2x^{5-3}y^{7-2}=2x^2y^5\]
anonymous
  • anonymous
Power to a power (multiply the exponents) \[(x^m)^n=x^{mn}\] Example \[(x^3y^5)^2=x^{3*2}y^{5*2}=x^6y^{10}\] Negative exponents (take the reciprocal, change the exponent to positive) \[x^{-m}=\left( \frac{ 1 }{ x } \right)^m\] Example \[(3x)^-5=\left( \frac{ 1 }{ 3x } \right)^5\] \[\left( \frac{ 1 }{ 2 } \right)^{-3}=2^3=8\] Anything to the 0 power is 1. \[(x^4+7)^0=1\] \[5(x^6y^3)^0=5*1=5\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Rational exponents / Radicals \[\sqrt[n]{x^m}=x^\frac{ m }{ n }\] Example \[\sqrt{3x}=(3x)^\frac{ 1 }{ 2 }\] \[\sqrt[4]{(12x)^5}=(12x)^\frac{ 5 }{ 4 }\]
AmberlyKhan
  • AmberlyKhan
Thanks! @peachpi

Looking for something else?

Not the answer you are looking for? Search for more explanations.