anonymous
  • anonymous
For each n that belongs N, let A subscript n={(n+1)k: k belong to N}. (a) What is A subscript 1 intersection A subscript 2? (b) Determine the union of the sets {A subscript n: n belong to N} and the intersection {A subscript n: n belong to N}
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
For each n that belongs N, let A subscript n={(n+1)k: k belong to N}. (a) What is A subscript 1 intersection A subscript 2? (b) Determine the union of the sets {A subscript n: n belong to N} and the intersection {A subscript n: n belong to N}
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

thomas5267
  • thomas5267
So: \[ \text{Assume }\mathbb{N}=\{1,2,3,4,5,6,7,\dots\},\,\text{i.e. }0\notin \mathbb{N}\\ A_n=\{(n+1)k,\,k\in \mathbb{N}\}\\ A_1=\{2k,\, k\in \mathbb{N}\}\\ A_2=\{3k,\, k\in \mathbb{N}\}\\ A_1\cap A_2=?\\ \bigcup_{r\in \mathbb{N}}A_r=A_1\cup A_2 \cup A_3 \cdots\\ \bigcap_{r\in\mathbb{N}}A_r=A_1\cap A_2 \cap A_3 \cdots \]
anonymous
  • anonymous
so, what is the question all about. what is the union and interception ?
anonymous
  • anonymous
so we're told that \(A_n\) is the set of integer multiples of \(n+1\), so intersection of \(A_1,A_2\) is $$\{\dots,-2,0,2,\dots\}\cap\{\dots,-3,0,3,\dots\}=\{\dots,-6,0,6,\dots\}$$ i.e. the set of integers divisible by both \(2\) and \(3\), or, equivalently, integer multiples of \(6\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
actually, i mean positive integers so no negatives or zeros
anonymous
  • anonymous
using this logic it should be obvious now why $$\bigcap_{n\in\mathbb{N}}A_n=\emptyset$$. similarly, it should be clear that if we take the union of all the positive multiples of positive integers bigger than \(1\), we'll get every nonnegative integer *except* one: $$\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}\setminus\{1\}$$
anonymous
  • anonymous
ok thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.