anonymous
  • anonymous
For each n that belongs N, let A subscript n={(n+1)k: k belong to N}. (a) What is A subscript 1 intersection A subscript 2? (b) Determine the union of the sets {A subscript n: n belong to N} and the intersection {A subscript n: n belong to N}
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
thomas5267
  • thomas5267
So: \[ \text{Assume }\mathbb{N}=\{1,2,3,4,5,6,7,\dots\},\,\text{i.e. }0\notin \mathbb{N}\\ A_n=\{(n+1)k,\,k\in \mathbb{N}\}\\ A_1=\{2k,\, k\in \mathbb{N}\}\\ A_2=\{3k,\, k\in \mathbb{N}\}\\ A_1\cap A_2=?\\ \bigcup_{r\in \mathbb{N}}A_r=A_1\cup A_2 \cup A_3 \cdots\\ \bigcap_{r\in\mathbb{N}}A_r=A_1\cap A_2 \cap A_3 \cdots \]
anonymous
  • anonymous
so, what is the question all about. what is the union and interception ?
anonymous
  • anonymous
so we're told that \(A_n\) is the set of integer multiples of \(n+1\), so intersection of \(A_1,A_2\) is $$\{\dots,-2,0,2,\dots\}\cap\{\dots,-3,0,3,\dots\}=\{\dots,-6,0,6,\dots\}$$ i.e. the set of integers divisible by both \(2\) and \(3\), or, equivalently, integer multiples of \(6\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
actually, i mean positive integers so no negatives or zeros
anonymous
  • anonymous
using this logic it should be obvious now why $$\bigcap_{n\in\mathbb{N}}A_n=\emptyset$$. similarly, it should be clear that if we take the union of all the positive multiples of positive integers bigger than \(1\), we'll get every nonnegative integer *except* one: $$\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}\setminus\{1\}$$
anonymous
  • anonymous
ok thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.