DanielaJohana
  • DanielaJohana
use trigonometric identities to simplify: (csc(x)-tan(x))sin(x)cos(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
write csc and tan in terms of sin and cos
Nnesha
  • Nnesha
csc =?? tan= ?? what is reciprocal of tan and csc ?
DanielaJohana
  • DanielaJohana
reciprocal of tanx is 1/cotx reciprocal of cscx is 1/sinx ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DanielaJohana
  • DanielaJohana
@Nnesha
Nnesha
  • Nnesha
yes right and also tan = sin over cos \[\huge\rm [\color{red}{\csc(x)-\tan(x)}]\sin(x)\cos(x)\] \[(\color{Red}{\frac{ 1 }{ \sin(x)} -\frac{ \sin(x) }{ \cos(x) }})\sin(x)\cos(x)\] now solve the parentheses find common denomiantor
Nnesha
  • Nnesha
can you do that ?? :)
DanielaJohana
  • DanielaJohana
@Nnesha So the common denom would be sin(x)cos(x) right?
Nnesha
  • Nnesha
yep
Nnesha
  • Nnesha
\[(\color{Red}{\frac{ ??-?? }{ \sin(x)cos(x)} })\sin(x)\cos(x)\] multiply top of first fraction by the bottom of the 2nd fraction multiply numerator of 2nd fraction by denominator of first fraction \[(\color{Red}{\frac{ 1(cos(x))-sin(x)sin(x) }{ \sin(x)cos(x)} })\sin(x)\cos(x)\]
Nnesha
  • Nnesha
try to simplify tht from there
DanielaJohana
  • DanielaJohana
@Nnesha Would I cancel the denominator with the outside?
Nnesha
  • Nnesha
yes you can
DanielaJohana
  • DanielaJohana
@Nnesha so would my final answer be \[\cos(x)-\sin^{2}(x)\]
Nnesha
  • Nnesha
you can simplify that sin^2 = ? btw do you have options ?
DanielaJohana
  • DanielaJohana
@Nnesha no I don't \[\sin ^{2}x = \frac{ 1-\cos2(x) }{ 2 }\]
Nnesha
  • Nnesha
sin^2x is just equal to 1-cos^2\[\rm cos^2 \theta +\sin^2 \theta =1\] so when you solve for sin^2theat you will get 1-cos^2
Nnesha
  • Nnesha
but i don't think we should substitute sin^2 just leave it as cos(x)-sin^2(x)
DanielaJohana
  • DanielaJohana
oh okay then thanks
Nnesha
  • Nnesha
my pleasure

Looking for something else?

Not the answer you are looking for? Search for more explanations.