Find the limit of the function algebraically. limit as x approaches negative five of quantity x squared minus twenty five divided by quantity x plus five. Would the limit = -5?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the limit of the function algebraically. limit as x approaches negative five of quantity x squared minus twenty five divided by quantity x plus five. Would the limit = -5?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

can you draw/type out the limit?
\[\lim_{x \rightarrow -5}\frac{ x^2-25 }{ x+5}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ok. can you factor the numerator?
(x+5)(x-5)
So the (x + 5) cancel and you have \[\lim_{x \rightarrow -5}x-5\] Now plug in -5 for x to get the limit
Oh so -10?
yep
Could you help me with one more?
ok
Two triangles can be formed with the given information. Use the Law of Sines to solve the triangles. A = 56°, a = 16, b = 17 @peachpi
\[\frac{ \sin A }{ a }=\frac{ \sin B }{ b }\] Solve for B to get the 2nd angle of the first triangle
I did that and got b = .88 which isn't an answer choice.
That's the answer choices I'm given.
(sin 56°)/16 = (sin B)/17 sin B = (17 sin 56°)/16 sin B = 0.88 Oh, I see you. You need to take the inverse sine to find the angle. Use the sin^-1 button on your calculator \[B = \sin^{-1} 0.88 \] B = 61.74°
Oh ok, so would the answer be B then?
either B or D
Oh...so how can I decide which?
use law of sines again to test C. We know C = 62.3° in this triangle, so solve for c (sin 56°)/16 = (sin 62.3°)/c
c = 17.1, so yeah B
Ok thanks! Just did it on my calculator lol.
you're welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question