simplify the expression

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

simplify the expression

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

A) 216^2t-1 B) 6^2t-1 C) 6^2t-2 D) 18^2t-2
add the exponents, that is all

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

When you multiply powers with the same base, add the exponents.
\(\large a^m \cdot a^n \cdot a^p = a^{m + n + p} \)
so the answer is C? @mathstudent55
HI!!\[1+t-2+t\]
so no, not C for a change
actually A @misty1212
oh no, keep the base the same ! i.e leave it as 6
but aren't we gonna multiply 6*6*6
no
Remember that 6 alone is really 6^1
for example \(2^3\times 2^2=2\times 2\times 2\times 2\times 2\times 2=2^5\)
the base does not change, just add up the exponents, keep the base
oh
\(\large 6 \cdot 6^{t - 2} \cdot 6^t=\) \(\large =6^1 \cdot 6^{t - 2} \cdot 6^t\) Now add the exponents, 1 + t - 2 + t
base how low can you go? https://www.youtube.com/watch?v=l_Jeyif7bB4

Not the answer you are looking for?

Search for more explanations.

Ask your own question