anonymous
  • anonymous
In circle A, the radius is 9 and the measure of angle CAT = 125°. Find the length of arc CT 5.3 19.6 10.6 21.2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jhannybean
  • Jhannybean
|dw:1439912230198:dw|
Jhannybean
  • Jhannybean
|dw:1439912378657:dw|
Jhannybean
  • Jhannybean
Use the formula \(s = r\theta\). \[r=9~,~ \theta =125^\circ\] Now you did not specify if it should be in radians or degrees, therefore... \[s=\theta \cdot \frac{180^\circ}{\pi} \cdot r ~ ~~\text{to find arc in radians}\] \[s=\theta \cdot \frac{\pi}{180^\circ} \cdot r ~~~\text{to find arc in degrees}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathstudent55
  • mathstudent55
If the angle measure were given in radians, you could use the formula \(s = r \theta\) directly. Since the angle was given in degrees, you need to convert degrees to radians: \(s = \theta \cdot \dfrac{\pi}{180^\circ} \cdot r\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.