What is the value of the expression? 5^-6*5^2 ---------- 5^-8 A. 5^−20 B. 5^−12 C. 5^4 D. 5^-4

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

What is the value of the expression? 5^-6*5^2 ---------- 5^-8 A. 5^−20 B. 5^−12 C. 5^4 D. 5^-4

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

exponent rule \[\huge\rm \frac{ x^m }{ x^n }=x^{m-n}\] there is negative exponent in the denominator so move that to the top
....
sorry i don't understand dot language.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

lol sorry It's just I don't get it :'(
basses are same so just transfer -8 to the top here is an example \[\large\rm \frac{ 2^3 }{ 2^{-5} } = x^{2\color{red}{+}5}\]
ok
and then apply exponent rule \[\huge\rm x^m \times x^n = x^{m+n}\]when you multiply same bases you should add their exponents
ok
so what did you get ?
7?
how did you get that ?
2+5
im so wrong! I'm sorry i'm being stupid
i know ... reread what i said above then try to solve
ill just put d bye
you should familiar with the exponent rules you can't have the negative exponent there \[\huge\rm x^{-m}=\frac{ 1 }{ x^m }\]
???
\[\huge\rm \frac{ \color{Red}{5^{-6} \times 5^{2} }}{ 5^{-8}}= \] first look at the numerator when you multiply same bases you should ADD their exponents \[\large\rm x^m \times x^n = x^{m+n}\]
8?
-6+(2) = 8 ?
-4
yes right \[\huge\rm \frac{ 5^{-4} }{ 5^{-8}}\] now move the -8 exponent to the top here is an example \[\huge\rm \frac{ x^m }{ x^{n} } = x^{m+(-n)}\]
i divide now?
now you don't divide bases are the same right 5 is base and there is negative -8 exponent in the denominator move that to top of the fraction
huh
here is an example \[\huge\rm \frac{ 2^{-3} }{ 2^{-9} } = 2^{-3+(-9)}\]
Add -3 and -9? -12
that's an example and there is typo wait a sec
oh
here is an example \[\huge\rm \frac{ 2^{-3} }{ 2^{-9} } = 2^{-3-(-9)}\]
oh subtract?
its 6
yes right - times -9 is = positive 9 so -3 +9 now look at ur question \[\huge\rm \frac{ 5^{-4} }{ 5^{-8} }= 5^{???}\]
-12
no remember sign would change
\[\huge\rm \frac{ 5^{-4} }{ 5^{-8} }= 5^{-4-(-8)}\]
6?
how did you get 6 ?? :O
IDK
so why did you say 6 ?? just add the exponent that's it
4
\[\huge\rm \frac{ 5^{-4} }{ 5^{-8} }= 5^{\color{Red}{-4-(-8)}}\] know how do solve red part(exponents ?
yes right!!
so its c
???
ye...
tysm!!!
YW

Not the answer you are looking for?

Search for more explanations.

Ask your own question