Ashy98
  • Ashy98
What is the sum of the arithmetic sequence 3, 9, 15..., if there are 26 terms? A.) 2,028 B.) 1,452 C.) 2,268 D.) 1,728
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

mathstudent55
  • mathstudent55
1. find the 26th term 2. add the first 26 terms
mathstudent55
  • mathstudent55
What is the common difference?
mathstudent55
  • mathstudent55
To find the common difference, subtract a term from the next term.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathstudent55
  • mathstudent55
d = common difference = 9 - 3 = 15 - 9 What is d?
Ashy98
  • Ashy98
the answer would be A
mathstudent55
  • mathstudent55
Formula to find the nth term: \(\large a_n = a_1 + d(n - 1)\) Formula to find the sum of the first n terms: \(\large S_n = \dfrac{n(a_1 + a_n)}{2} \) Using the formulas above, you get: \(a_n = 153\) \(S_n = 2028\)
mathstudent55
  • mathstudent55
You are correct.
Ashy98
  • Ashy98
okay thank you!(:

Looking for something else?

Not the answer you are looking for? Search for more explanations.