Let A={14,15,16,17,18,19} a. How many subsets does A have? b. How many proper subsets does A have?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Let A={14,15,16,17,18,19} a. How many subsets does A have? b. How many proper subsets does A have?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

It can be shown that, for a set with n elements, there are 2^n subsets. For proper subsets, subtract 1 from 2^n
hold on what? Wouldn't there be 6 elements... and...
I'm drawing blanks here...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes there are 6 elements, and thus there are 2^6 subsets
so 6 subsets and 2 proper subsets?
2^6 does not equal 6
|dw:1439938896653:dw|
64
right :)
the number of proper subsets is 1 less than the number of subsets
64-1?
yes
Let A={14,15,16,17,18,19} a. How many subsets does A have? =6 b. How many proper subsets does A have? =63
a. is not correct
a.=64
thats correct now
ahh!! something so easy, thank you, i cant do math to save my life lol

Not the answer you are looking for?

Search for more explanations.

Ask your own question