anonymous
  • anonymous
The number of chips of different colors in Vicky's bag is shown below: 5 blue chips 11 pink chips 9 white chips Vicky takes out a chip from the bag randomly without looking. She replaces the chip and then takes out another chip from the bag. What is the probability that Vicky takes out a blue chip in both draws? 5/25 * 5/25 = 25/625 5/25 + 5/25 = 10/25 5/25 * 4/24 = 20/600 5/25 + 4/24 = 220/600
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Vocaloid
  • Vocaloid
well, first let's find the probability of getting a blue chip number of blue chips/total number of chips = ?
anonymous
  • anonymous

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Vocaloid
  • Vocaloid
right, so to find the probability of 2 blue chips, we multiply (5/25) * (5/25) which is our answer
Vocaloid
  • Vocaloid
you can leave it as a fraction
anonymous
  • anonymous
0.04 to 1/25
Vocaloid
  • Vocaloid
you don't have to reduce the fraction 5/25 * 5/25 = (5*5)/(25*25) = ?
anonymous
  • anonymous
25/625 @Vocaloid

Looking for something else?

Not the answer you are looking for? Search for more explanations.