PLEASE Determine two pairs of polar coordinates for the point (5, -5) with 0° ≤ θ < 360°. (5 square root of 2, 315°), (-5 square root of 2, 135°) (5 square root of 2, 45°), (-5 square root of 2, 225°) (5 square root of 2, 135°), (-5 square root of 2, 315°) (5 square root of 2, 225°), (-5 square root of 2, 45°)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

PLEASE Determine two pairs of polar coordinates for the point (5, -5) with 0° ≤ θ < 360°. (5 square root of 2, 315°), (-5 square root of 2, 135°) (5 square root of 2, 45°), (-5 square root of 2, 225°) (5 square root of 2, 135°), (-5 square root of 2, 315°) (5 square root of 2, 225°), (-5 square root of 2, 45°)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hint the point is in the 4th quadrant
|dw:1440031939497:dw|
I'm not sure what you mean. I have never worked with this kind of problem before..

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1440032084293:dw|
ok when converting to polar form use following equations for given point (x,y) \[r = \sqrt{x^2 + y^2}\] \[\tan \theta = \frac{y}{x}\]
Okay so polar coordinates are the opposite coordinates?
Okay
so \[r=\sqrt{5^2+(-5^2)}\]
therefore r= \[\sqrt{50}\]
now there are multiple ways of writing a given point in polar form different angles can be used as long as tan = y/x r can be neg, which reflects the point 180 degrees
correct, simplify the radical \[\sqrt{50} = 5 \sqrt{2}\]
Alright, and I got \[\tan \theta=-5/5\]
=-1
theta = tan^-1(-1)
so theta= -pi/4
What am I to do with this information?
ok good so we have 1 angle (-45 or -pi/4) now use my circle drawings above to see how to get an equivalent angle
I dont understand..I can see the equivalent angle
I just dont know how to get it
here is a general form showing all 4 possible points for a given (x,y) \[(r,\theta)\] \[(r, \theta +2\pi)\] \[(-r, \theta + \pi)\] \[(-r, \theta - \pi)\]
|dw:1440033135732:dw|
So what would be my theta and my r?
you already calculated those ..... r = sqrt(50) , theta = pi/4
sorry -pi/4
Oh, okay. I would have the following possible answers then: A. \[5\sqrt{2},-\left(\begin{matrix}\pi \\ 4\end{matrix}\right)\] B. \[5\sqrt{2},-\left(\begin{matrix}\pi \\ 4\end{matrix}\right)+2pi\] C. \[-5\sqrt{2},-\left(\begin{matrix}\pi \\ 4\end{matrix}\right)+pi\] D. \[-5\sqrt{2},-\left(\begin{matrix}\pi \\ 4\end{matrix}\right)-pi\]
what do you mean by 'find 2 match the given pairs'
figure it out...gotta go good luck!

Not the answer you are looking for?

Search for more explanations.

Ask your own question