anonymous
  • anonymous
Limit of |x-2|/(x-2) as x approaches 2+?
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
idku
  • idku
\[\large \lim_{x \rightarrow 2^+}\frac{|x-2|}{x-2}\] like this?
anonymous
  • anonymous
yes!
idku
  • idku
for all values that are greater than 2, the x-2 is going to be positive anyway without the absolute value). So, you can re-write it as:\[\large \lim_{x \rightarrow 2^+}\frac{x-2}{x-2}\] and then: \[\large \lim_{x \rightarrow 2^+}1=1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

idku
  • idku
you can graph the function and see how does it behave from the right of x=2, and you will also find out that y=1 when x\(\rightarrow2^+\)
anonymous
  • anonymous
That makes sense now. Thank you! :)
idku
  • idku
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.