Elise_a18
  • Elise_a18
Jamal wrote the following statements: Statement 1: Perpendicular lines are two lines that intersect at 90° angles. Statement 2: All right angles are congruent. Which geometry term does each statement represent? Statement 1: definition; Statement 2: theorem Statement 1: postulate; Statement 2: definition Statement 1: theorem; Statement 2: postulate Statement 1: postulate; Statement 2: theorem
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Elise_a18
  • Elise_a18
I'm thinking B
anonymous
  • anonymous
Should Be first Choice, or A statement 1 shows the defintion of perpendicular lines and statement 2 is based on that all right angles have a measure of 90, so thats why all right angles must be congruent
anonymous
  • anonymous
reply if I helped :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@Elise_a18
Elise_a18
  • Elise_a18
ok thanks
anonymous
  • anonymous
yeah :)
anonymous
  • anonymous
tell me if you got it right! :)
Elise_a18
  • Elise_a18
yup
anonymous
  • anonymous
;)

Looking for something else?

Not the answer you are looking for? Search for more explanations.