idku
  • idku
How do I write these fractions as a series (if possible)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
idku
  • idku
\(\large\color{black}{ \displaystyle \frac{ 1 }{2\times 3 \times 4} -\frac{ 1 }{4\times 5 \times 6}+\frac{ 1 }{6\times 7 \times 8}-\frac{ 1 }{8\times 9 \times 10}~+.... }\) and this pattern continues like this.
idku
  • idku
\(\Large\color{black}{ \displaystyle \sum_{n=1}^\infty ~\left[\frac{\left(½-(½)(-1)^n\right)}{(n+1)(n+2)(n+3)}~\right] }\) but there is one problem here
idku
  • idku
I need to have: positive output, when n=1 negative output, when n=3 positive output, when n=5 negative out, when n=7 so on....

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

idku
  • idku
I need alternation, but regular (-1)\(^n\) wouldn't suffice here....
anonymous
  • anonymous
\[\sum_{n=1}^{\infty}\frac{ \left( -1 \right)^{n+1} }{ 2n \left( 2n+1 \right)\left( 2n+2 \right) }\]
idku
  • idku
oh yeah! I thought of 2n in the beginning, but for some reason I thought it was wrong... clearly, 2*3*4 then 4*5*6 and on also, the alternation is there. THANKS !!!!
anonymous
  • anonymous
yw
idku
  • idku
So, I can say: \(\large \displaystyle \pi =3+\sum_{n=1}^{\infty}\frac{ 4\left( -1 \right)^{n+1} }{ 2n \left( 2n+1 \right)\left( 2n+2 \right) }\)
idku
  • idku
this is why i wanted that series representation. thanks once again:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.