anonymous
  • anonymous
If sine of x equals 1 over 2, what is cos(x) and tan(x)? Explain your steps in complete sentences.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[sinx = \frac{ 1 }{ 2 }\] as such correct?
anonymous
  • anonymous
@iambatman yes
anonymous
  • anonymous
Notice the ratio for sinx is \[\sin(x) = \frac{ \text{opposite} }{ \text{hypotenuse} }\] so we can make a right triangle |dw:1440123129207:dw| we can use pythagorean theorem to find the adjacent side, can you do that please?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1440123246771:dw|
anonymous
  • anonymous
@iambatman
anonymous
  • anonymous
\[a^2+b^2 = c^2 \implies 1^2+b^2=2^2\]\[b^2 = 2^2 - 1^2 \implies b = \sqrt{4-1} = \sqrt{3}\] yup perfect!
anonymous
  • anonymous
Now since we have adjacent side we should be able to find tanx and cosx now :)\[cosx = \frac{ \text{adjacent} }{ \text{hypotenuse} }\] \[tanx = \frac{ \text{opposite} }{ \text{adjcanet} }\]
anonymous
  • anonymous
So far so good?
anonymous
  • anonymous
yep! cos=rad3/2?
anonymous
  • anonymous
Exactly! And tanx will be? :)
anonymous
  • anonymous
and tan=1/rad3
anonymous
  • anonymous
Perfect :) So we have \[\cos(x) = \frac{ \sqrt{3} }{ 2 }\] and \[\tan(x) = \frac{ 1 }{ \sqrt{3} }\] as you mentioned!
anonymous
  • anonymous
so thats the whole answer
anonymous
  • anonymous
Yup, that's it! Nice work

Looking for something else?

Not the answer you are looking for? Search for more explanations.