anonymous
  • anonymous
What is the integration of cosec2x??
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Sepeario
  • Sepeario
https://www.symbolab.com/solver/integral-calculator/%5Cint%20cosec%5Cleft(2x%5Cright)dx/?origin=enterkey
anonymous
  • anonymous
From Mathematica. \[\int\limits \csc (2 x) \, dx=\frac{1}{2} \log (\sin (x))-\frac{1}{2} \log (\cos (x)) \]
IrishBoy123
  • IrishBoy123
from standard integral: \(\int \csc{u} \, du = \ln{\left| \csc{u} - \cot{u}\right|} + C\) https://gyazo.com/75a731bf97950a5f69995fa4255a19f7 so for \( \int \csc{2x} \, dx \) sub \(u = 2x, du = 2 dx, dx = du/2\) \(\implies \frac{1}{2}\int \csc{u} \, du = \\\frac{1}{2} \ln{\left| \csc{u} - \cot{u}\right|} + C \\= \frac{1}{2} \ln{\left| \csc{2x} - \cot{2x}\right|} + C\) \(csc{2x} - \cot{2x}\) simplifies \(\large \frac{1}{sin \ 2x} - \frac{cos \ 2x}{sin \ 2x} = \frac{1 - (1- 2 sin^2x)}{2 \ sinx \ cos x} = tan \ x\) \(\implies \int \csc{2x} \, du = \frac{1}{2} \ln{\left| tan \ x\right|} + C\) the sub for the underlying integral follows this original idea for sec https://en.wikipedia.org/wiki/Integral_of_the_secant_function

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
On the off-chance you meant \(\csc^2x\), recall that \(\dfrac{d}{dx}\cot x=-\csc^2x\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.