anonymous
  • anonymous
WILL AWARD MEDAL How do you solve the inequality (x^2)(e^x) ln x > 0?? @nincompoop @Nnesha @zepdrix @jagr2713
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zzr0ck3r
  • zzr0ck3r
well \(e^x>0\) for all \(x\), \(x^2>0\) for all \(x\ne 0\) and \(\ln(x)>0\) for all \(x>1\). So ?
zzr0ck3r
  • zzr0ck3r
hint: the \(ln(x)\) factor trumps them all.
anonymous
  • anonymous
sorry i don't really understand where this is going.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@zzr0ck3r
anonymous
  • anonymous
These are things we can do without affecting the direction of the inequality: Add (or subtract) a number from both sides. Multiply (or divide) both sides by a positive number. Simplify a side. Hoped this helped :)
zzr0ck3r
  • zzr0ck3r
What I am saying is that \(x^2e^x\ln(x)>0 \iff \ln(x)>0\iff x>1\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.