AmTran_Bus
  • AmTran_Bus
Find the real and imaginary parts of this
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
AmTran_Bus
  • AmTran_Bus
|dw:1440206784952:dw|
AmTran_Bus
  • AmTran_Bus
\[e ^{-2 +i \pi/2}\]
AmTran_Bus
  • AmTran_Bus
can I use Euler's formula?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
yes
AmTran_Bus
  • AmTran_Bus
Hum. I just don't see it though.
Zarkon
  • Zarkon
\[\Large e ^{-2 +i \pi/2}=e ^{-2} e^{i \pi/2}\]
AmTran_Bus
  • AmTran_Bus
I actually have that. But can you walk me through the steps please? Like where did the sin and cos from the formula go?
Zarkon
  • Zarkon
\[e^{i\theta}=\cos(\theta)+i\sin(\theta)\] \[e^{i\pi/2}=\cos(\pi/2)+i\sin(\pi/2)\]
AmTran_Bus
  • AmTran_Bus
Good. There was a problem just like that I literally just worked and got that answer. But how does that carry on to this problem? I'm so sorry, I just can't see it (this is math reveiew in a p chem book).
Zarkon
  • Zarkon
\[\Large e ^{-2 +i \pi/2}=e ^{-2} e^{i \pi/2}=e^{-2}[\cos(\pi/2)+i\sin(\pi/2)]\] \[\Large=e^{-2}[0+i\times1]=e^{-2}i\]
AmTran_Bus
  • AmTran_Bus
Ahhhh! Duh!!!!!! Basic unit circle!
Zarkon
  • Zarkon
yes
AmTran_Bus
  • AmTran_Bus
I owe you a million dollars. Thanks.
Zarkon
  • Zarkon
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.