• anonymous
Tan (sin^-1(-1))=____? A. undefined B. -1 C. 1 D. 0
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Wait is it A. undefined ?
  • Kainui
What you put into a trig function is an angle and out of it you get a ratio of sides. So the inverse of a trig function takes ratios of sides and gives you an angle! To make our lives simpler, I will do that: \[\tan ( \sin^{-1}(-1))\] See, that arcsine in there is giving us an angle: \[\theta = \sin^{-1}(-1)\] We can turn it inside out by taking sine of both sides: \[\sin(\theta) = -1\] So now what value of \(\theta\) gives us this answer? Once you figure this out you can plug it in based on our substitution to find out what \[\tan ( \sin^{-1}(-1)) = \tan(\theta)=?\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.