anonymous
  • anonymous
Help!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
is your function like this: \[\Large s\left( t \right) = \sqrt {2t + 1} \]
anonymous
  • anonymous
Yes
Michele_Laino
  • Michele_Laino
In order to find the acceleration, we have to compute the second derivative of that function s(t)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
I can rewrite your function as below: \[\Large s\left( t \right) = \sqrt {2t + 1} = {\left( {2t + 1} \right)^{1/2}}\] so the first derivative is: \[\Large \frac{{ds}}{{dt}} = \frac{1}{2} \cdot {\left( {2t + 1} \right)^{\frac{1}{2} - 1}} \cdot 2 = ...?\] please complete
anonymous
  • anonymous
do you guys know what website I can take screen shots with?
anonymous
  • anonymous
Michele can you help me with a question???
anonymous
  • anonymous
When I derive it I got 1/sqr root(2t+1)
Michele_Laino
  • Michele_Laino
correct!
anonymous
  • anonymous
Please don't ask questions on my question :)
anonymous
  • anonymous
And I would plug in 4 into this?
Michele_Laino
  • Michele_Laino
\[\Large \frac{{ds}}{{dt}} = \frac{1}{2} \cdot {\left( {2t + 1} \right)^{\frac{1}{2} - 1}} \cdot 2 = \frac{1}{{\sqrt {2t + 1} }}\]
anonymous
  • anonymous
Sorry but Michele can you help me with a question I will fan and medal
Michele_Laino
  • Michele_Laino
now, we have to compute the second derivative of your starting function, namely we have to compute this: \[\Large \frac{{{d^2}s}}{{d{t^2}}} = \frac{d}{{dt}}\left( {\frac{1}{{\sqrt {2t + 1} }}} \right)\]
anonymous
  • anonymous
Okay I got -1/(2t+1)^(3/2)
Michele_Laino
  • Michele_Laino
we can rewrite that last expression as below: \[\Large \begin{gathered} \frac{{{d^2}s}}{{d{t^2}}} = \frac{d}{{dt}}\left( {\frac{1}{{\sqrt {2t + 1} }}} \right) = \hfill \\ \hfill \\ = \frac{d}{{dt}}{\left( {2t + 1} \right)^{ - 1/2}} = - \frac{1}{2} \cdot {\left( {2t + 1} \right)^{ - \frac{1}{2} - 1}} \cdot 2 = ...? \hfill \\ \end{gathered} \]
Michele_Laino
  • Michele_Laino
correct! Now, you can set t=4, into that last second derivative
anonymous
  • anonymous
Okay I got -1/27
Michele_Laino
  • Michele_Laino
that's right!
anonymous
  • anonymous
Thank you so much for your help!!
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.