At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

please help me

I think the quadratic function will work for this

after plugging in everything

\(\bf{x=\dfrac{-b±\sqrt{b^2-4ac}}{2a}}\)

original formula is
\(\bf{f(x)=ax^2+bx+c}\)

@jaredhm29 are you there?

yes

Ive had a stuggle in this segment

can you plug a, b , and c into the quadratic formula?

idk what u mean sry

\(\bf{x=\dfrac{-b±\sqrt{b^2-4ac}}{2a}}\)

for a, you have -16
for b, you have 15
and for c, you have 4

\(\bf{x=\dfrac{-15±\sqrt{15^2-4*(-16)*4}}{2*(-16)}}\)

first thing
what is
\(15^2=?\)

please help me @Miracrown