Integrate

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1440294714804:dw|
In this case, would you be considering pi as 3.14?
well duh

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Your answer would round up to 6 then
Just to clarify one small thing, \(d\phi\) or \(d\theta\)?
The first :)
\[\frac{1}{\sqrt{2\pi}} \int d\phi\]\[=\frac{\phi}{\sqrt{2\pi}}+c\]?? Hahaha. Idk it feels liek theres more to it.
like*
Yea, I agree. How do you integrate the bottom?
What bottom are you referring to?
sqrt 2pi
OHH nvm I see
\[\frac{1}{\sqrt{2\pi}}\] this is a constant, therefore can be extracted from the integral before even integrating. Right?
Got it. My bad. Thanks.
No problemo
This reminds me of a problem that always tricks people, "What's the derivative of \(\pi^2\)" and everyone likes to say \(2 \pi\) instead of 0 haha

Not the answer you are looking for?

Search for more explanations.

Ask your own question