anonymous
  • anonymous
How would you use the trigonometric subtraction formula to verify this identity:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sin(\frac{ \pi }{ 2 }-x)=cosx\]
zzr0ck3r
  • zzr0ck3r
\(\sin(\alpha-\beta)= \sin(\alpha)\cos(\beta)-\sin(\beta)\cos(\alpha)\) Using that we have \(\sin(\dfrac{\pi}{2}-x)=\sin(\dfrac{\pi}{2})\cos(x)-\sin(x)\cos(\dfrac{\pi}{2})=1*\cos(x)-\sin(x)*0=\cos(x)\)
anonymous
  • anonymous
Can you explain to me

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zzr0ck3r
  • zzr0ck3r
which part?
anonymous
  • anonymous
=1∗cos(x)−sin(x)∗0=cos(x)
zzr0ck3r
  • zzr0ck3r
They said you can use this formula \[\sin(\alpha-\beta)= \sin(\alpha)\cos(\beta)-\sin(\beta)\cos(\alpha)\] If we let \(\alpha=\dfrac{\pi}{2}\) and let \(\beta=x\) we get the above result.
zzr0ck3r
  • zzr0ck3r
well what is 1*cos(x)? what is 0*sin(x)? what is cos(x) -0?
anonymous
  • anonymous
Yeah , but why did you add that part ?
zzr0ck3r
  • zzr0ck3r
add?
anonymous
  • anonymous
Like why is that part there
zzr0ck3r
  • zzr0ck3r
I feel like there is an echo in here.

Looking for something else?

Not the answer you are looking for? Search for more explanations.