How would you use the trigonometric subtraction formula to verify this identity:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How would you use the trigonometric subtraction formula to verify this identity:

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\sin(\frac{ \pi }{ 2 }-x)=cosx\]
\(\sin(\alpha-\beta)= \sin(\alpha)\cos(\beta)-\sin(\beta)\cos(\alpha)\) Using that we have \(\sin(\dfrac{\pi}{2}-x)=\sin(\dfrac{\pi}{2})\cos(x)-\sin(x)\cos(\dfrac{\pi}{2})=1*\cos(x)-\sin(x)*0=\cos(x)\)
Can you explain to me

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

which part?
=1∗cos(x)−sin(x)∗0=cos(x)
They said you can use this formula \[\sin(\alpha-\beta)= \sin(\alpha)\cos(\beta)-\sin(\beta)\cos(\alpha)\] If we let \(\alpha=\dfrac{\pi}{2}\) and let \(\beta=x\) we get the above result.
well what is 1*cos(x)? what is 0*sin(x)? what is cos(x) -0?
Yeah , but why did you add that part ?
add?
Like why is that part there
I feel like there is an echo in here.

Not the answer you are looking for?

Search for more explanations.

Ask your own question