anonymous
  • anonymous
ques
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\vec \nabla \times \vec \nabla \times \vec f=\vec \nabla(\vec \nabla . \vec f)-\nabla^2 \vec f\] Can we use vector triple product to prove this identity??Expanding it is long and unecessary :/
Michele_Laino
  • Michele_Laino
are you familiar with the Ricci's symbol
anonymous
  • anonymous
Nope

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
you can apply this identity: \[\Large {\mathbf{a}} \times \left( {{\mathbf{b}} \times {\mathbf{c}}} \right) = \left( {{\mathbf{a}} \cdot {\mathbf{c}}} \right){\mathbf{b}} - \left( {{\mathbf{a}} \cdot {\mathbf{b}}} \right){\mathbf{c}}\]
anonymous
  • anonymous
that's what I am asking if it's ok to use that
anonymous
  • anonymous
It looks like a quick and cheat method lol
Michele_Laino
  • Michele_Laino
yes! you have to memorize that identity :)
anonymous
  • anonymous
alright sweet :D
Michele_Laino
  • Michele_Laino
:)
IrishBoy123
  • IrishBoy123
do it!! you're just pattern matching after all and \(\nabla\) is functionally a vector....
anonymous
  • anonymous
yeah :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.