anonymous
  • anonymous
What is the value of i 20+1? 1 –1 –i i
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I got 2 but thats not an option?
SolomonZelman
  • SolomonZelman
maybe you meant \(\large\color{black}{ \displaystyle i^{20+1} }\) ?
anonymous
  • anonymous
yes! sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
yes, it is alright. next when you want to write that, just say i^(20+1) where ^ indicates an exponent, and (...) tell you what your exponent is.
SolomonZelman
  • SolomonZelman
Anyway,
SolomonZelman
  • SolomonZelman
Can you tell me what does \(\large\color{black}{ \displaystyle i^4 }\) equal to?
anonymous
  • anonymous
oh duh, answer is i
SolomonZelman
  • SolomonZelman
yes, that is 1.
SolomonZelman
  • SolomonZelman
So, \(\large\color{black}{ \displaystyle i^{20+1}=i^{20} \times i^1=i^{4\times 5}\times i=\left(i^4\right)^5\times i = 1^5\times i=? }\)
SolomonZelman
  • SolomonZelman
well, you probably know anyway that \(\large\color{black}{ \displaystyle i^{4n}=1 }\) \(\large\color{black}{ \displaystyle i^{4n+1}=i }\) \(\large\color{black}{ \displaystyle i^{4n+2}=-1 }\) \(\large\color{black}{ \displaystyle i^{4n+3}=-i }\) and again restarting the cycle, \(\large\color{black}{ \displaystyle i^{4n+4}=1 }\) and so on... (this is true for any whole number powers of i)
SolomonZelman
  • SolomonZelman
(saying, for any whole number n)
SolomonZelman
  • SolomonZelman
If you got any questions, please ask...

Looking for something else?

Not the answer you are looking for? Search for more explanations.