SolomonZelman
  • SolomonZelman
infinite geometric series convergence. recap
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
texaschic101
  • texaschic101
jeez solomon...you must be typing a book....a really long one..lol
Nnesha
  • Nnesha
,-,
SolomonZelman
  • SolomonZelman
\(\Large \color{blue}{ \displaystyle ^{\color{red}{~~~~~~~~~~~~~~~~~~~~~~~~~{\rm r}^4~~~~~+~~~~{\rm r}^3~~~~+~~~~{\rm r}^2~~~~+~~~~{\rm r}~~~~+~~~1}}_{\Huge _\text{_______________________________}}}\) \(\large\color{blue}{ \displaystyle -{\rm r}+1{\huge|}~~-{\rm r}^5~~+~0{\rm r}^4~+~~0{\rm r}^3~~+~~0{\rm r}^2~+~~0{\rm r}~~+~1}\) \(\large\color{red}{ \displaystyle -{\rm r}^5~~+~~{\rm r}^4 }\) \(\large\color{blue}{ \displaystyle ^\text{____________} }\) \(\large\color{red}{ \displaystyle -{\rm r}^4~~+~~0{\rm r}^3 }\) \(\large\color{red}{ \displaystyle -{\rm r}^4~~+~~{\rm r}^3 }\) \(\large\color{blue}{ \displaystyle ^\text{_____________} }\) \(\large\color{red}{ \displaystyle -{\rm r}^3 ~~+~~0{\rm r}^2 }\) \(\large\color{red}{ \displaystyle -{\rm r}^3 ~~+~~~{\rm r}^2 }\) \(\large\color{blue}{ \displaystyle ^\text{_______________} }\) \(\large\color{red}{ \displaystyle -{\rm r}^2 ~~+~~0{\rm r} }\) \(\large\color{red}{ \displaystyle -{\rm r}^2 ~~+~~{\rm r} }\) \(\large\color{blue}{ \displaystyle ^\text{______________} }\) \(\large\color{red}{ \displaystyle -{\rm r}~+~1 }\) \(\large\color{red}{ \displaystyle -{\rm r}~+~1 }\) \(\large\color{blue}{ \displaystyle ^\text{___________} }\) \(\large\color{red}{ \displaystyle 0 }\) If you agree with (and understand) the above polynomial division, then you should get an intuitive understanding of why: \(\color{black}{ \displaystyle \color{blue}{(-{\rm r}^{\rm n}+1)}\div \color{red}{(-{\rm r}+1)} ~~= \color{green}{{\rm r}^{{\rm n}-1}~+~{\rm r}^{{\rm n}-2}~+~....~+~{\rm r}^3~+~{\rm r}^2~+~{\rm r}~+~1} }\) \((\)For all natural number n that are greater than 1 \()\) Thus we get: \(\large\color{black}{ \displaystyle \sum_{k=1}^{n}\left(r^{k-1}\right)=1+r+r^2+r^3+...+r^{n-1} = \frac{-r^n+1}{-r+1}}\) This is where: \(\large\color{black}{ \displaystyle \sum_{k=1}^{n}\left(r^{k-1}\right)= \frac{1-r^n}{1-r}}\) and \(\large\color{black}{ \displaystyle \sum_{k=1}^{n}\color{orangered}{a_1}\left(r^{k-1}\right)= \frac{\color{orangered}{a_1}\left(1-r^n\right)}{1-r}}\) come from. ---------------------------------- Now, convergence of an infinite geometric series will be therefore determined by the convergence of the sequence of (1-r\(^n\))/(1-r) \(\large\color{slate}{\displaystyle\lim_{n \rightarrow ~\infty}(1+r+r^2+r^3+...+r^{n-1})=\lim_{n \rightarrow ~\infty}\left(\frac{1-r^n}{1-r}\right)}\) after applying limit properties, we get: \(\large\color{slate}{\displaystyle\lim_{n \rightarrow ~\infty}\left(\frac{1-r^n}{1-r}\right)=\left(\frac{1}{1-r}\right)\lim_{n \rightarrow ~\infty}\left(1-r^n\right) \\[1.9 em] \large \displaystyle =\left(\frac{1}{1-r}\right)\left(1-\lim_{n \rightarrow ~\infty}r^n\right)}\) \({\large \displaystyle =\left(\frac{1}{1-r}\right)-\left(\frac{1}{1-r}\right)\lim_{n \rightarrow ~\infty}r^n}\) \(\scriptsize\color{ slate }{\scriptsize{\bbox[5pt, royalblue ,border:2px solid royalblue ]{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ }}}\) So, \(r\ne1\) (because when r=1 we get an indetermine sum for the series) And when r>1 the limit will go into infinity. So 0>r>1 is so far verfied. \(\large\color{slate}{\displaystyle\lim_{n \rightarrow ~\infty}(r^n)}\) for -1

Looking for something else?

Not the answer you are looking for? Search for more explanations.