A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • one year ago

infinite geometric series convergence. recap

  • This Question is Closed
  1. texaschic101
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    jeez solomon...you must be typing a book....a really long one..lol

  2. Nnesha
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0


  3. SolomonZelman
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \(\Large \color{blue}{ \displaystyle ^{\color{red}{~~~~~~~~~~~~~~~~~~~~~~~~~{\rm r}^4~~~~~+~~~~{\rm r}^3~~~~+~~~~{\rm r}^2~~~~+~~~~{\rm r}~~~~+~~~1}}_{\Huge _\text{_______________________________}}}\) \(\large\color{blue}{ \displaystyle -{\rm r}+1{\huge|}~~-{\rm r}^5~~+~0{\rm r}^4~+~~0{\rm r}^3~~+~~0{\rm r}^2~+~~0{\rm r}~~+~1}\) \(\large\color{red}{ \displaystyle -{\rm r}^5~~+~~{\rm r}^4 }\) \(\large\color{blue}{ \displaystyle ^\text{____________} }\) \(\large\color{red}{ \displaystyle -{\rm r}^4~~+~~0{\rm r}^3 }\) \(\large\color{red}{ \displaystyle -{\rm r}^4~~+~~{\rm r}^3 }\) \(\large\color{blue}{ \displaystyle ^\text{_____________} }\) \(\large\color{red}{ \displaystyle -{\rm r}^3 ~~+~~0{\rm r}^2 }\) \(\large\color{red}{ \displaystyle -{\rm r}^3 ~~+~~~{\rm r}^2 }\) \(\large\color{blue}{ \displaystyle ^\text{_______________} }\) \(\large\color{red}{ \displaystyle -{\rm r}^2 ~~+~~0{\rm r} }\) \(\large\color{red}{ \displaystyle -{\rm r}^2 ~~+~~{\rm r} }\) \(\large\color{blue}{ \displaystyle ^\text{______________} }\) \(\large\color{red}{ \displaystyle -{\rm r}~+~1 }\) \(\large\color{red}{ \displaystyle -{\rm r}~+~1 }\) \(\large\color{blue}{ \displaystyle ^\text{___________} }\) \(\large\color{red}{ \displaystyle 0 }\) If you agree with (and understand) the above polynomial division, then you should get an intuitive understanding of why: \(\color{black}{ \displaystyle \color{blue}{(-{\rm r}^{\rm n}+1)}\div \color{red}{(-{\rm r}+1)} ~~= \color{green}{{\rm r}^{{\rm n}-1}~+~{\rm r}^{{\rm n}-2}~+~....~+~{\rm r}^3~+~{\rm r}^2~+~{\rm r}~+~1} }\) \((\)For all natural number n that are greater than 1 \()\) Thus we get: \(\large\color{black}{ \displaystyle \sum_{k=1}^{n}\left(r^{k-1}\right)=1+r+r^2+r^3+...+r^{n-1} = \frac{-r^n+1}{-r+1}}\) This is where: \(\large\color{black}{ \displaystyle \sum_{k=1}^{n}\left(r^{k-1}\right)= \frac{1-r^n}{1-r}}\) and \(\large\color{black}{ \displaystyle \sum_{k=1}^{n}\color{orangered}{a_1}\left(r^{k-1}\right)= \frac{\color{orangered}{a_1}\left(1-r^n\right)}{1-r}}\) come from. ---------------------------------- Now, convergence of an infinite geometric series will be therefore determined by the convergence of the sequence of (1-r\(^n\))/(1-r) \(\large\color{slate}{\displaystyle\lim_{n \rightarrow ~\infty}(1+r+r^2+r^3+...+r^{n-1})=\lim_{n \rightarrow ~\infty}\left(\frac{1-r^n}{1-r}\right)}\) after applying limit properties, we get: \(\large\color{slate}{\displaystyle\lim_{n \rightarrow ~\infty}\left(\frac{1-r^n}{1-r}\right)=\left(\frac{1}{1-r}\right)\lim_{n \rightarrow ~\infty}\left(1-r^n\right) \\[1.9 em] \large \displaystyle =\left(\frac{1}{1-r}\right)\left(1-\lim_{n \rightarrow ~\infty}r^n\right)}\) \({\large \displaystyle =\left(\frac{1}{1-r}\right)-\left(\frac{1}{1-r}\right)\lim_{n \rightarrow ~\infty}r^n}\) \(\scriptsize\color{ slate }{\scriptsize{\bbox[5pt, royalblue ,border:2px solid royalblue ]{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ }}}\) So, \(r\ne1\) (because when r=1 we get an indetermine sum for the series) And when r>1 the limit will go into infinity. So 0>r>1 is so far verfied. \(\large\color{slate}{\displaystyle\lim_{n \rightarrow ~\infty}(r^n)}\) for -1<r<0, the limit will approach zero (and thus exist) as well, and therefore by a convergence of this limit for ||r|<1, we verify the convergence of the sum of the series for |r|<1.

  4. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.