anonymous
  • anonymous
Can someone please help me step by step with this problem? x^(-2/3) (2-x)^2 - 6x^1/3 (2-x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Without knowing exactly what you're trying to do, we can't help much. I'd guess you're wanting to simplify the given expression. \[x^{-2/3}(2-x)^2-6x^{1/3}(2-x)\] For starters, there's a common factor of \(2-x\), so let's pull that out: \[(2-x)\left[x^{-2/3}(2-x)-6x^{1/3}\right]\] Next, notice that \(-\dfrac{2}{3}=-\dfrac{3}{3}+\dfrac{1}{3}\). Since \(x^{a+b}=x^ax^b\), this means that \(x^{-2/3}=x^{-3/3}x^{1/3}=x^{-1}x^{1/3}\), and so the two bracketed terms share another common factor of \(x^{1/3}\). Pulling that out gives \[x^{1/3}(2-x)\left[x^{-1}(2-x)-6\right]\] What else can you do?

Looking for something else?

Not the answer you are looking for? Search for more explanations.