Anas.P
  • Anas.P
fourier transform question first question please as soon as possible.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Anas.P
  • Anas.P
@dan815
Anas.P
  • Anas.P
Find the fourier Transform of \[e^{-a^{2}x^{2}} ,a>0\]Given \[\int\limits_{-\infty}^{\infty} e^{-t} dt = \sqrt{\pi}\]
Anas.P
  • Anas.P
@SolomonZelman

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I think you meant \(e^{-\color{red}{t^2}}\) in that last integral?
anonymous
  • anonymous
\[\large\begin{align*}\mathcal{F}\{e^{-a^2x^2}\}&=\frac{1}{2\pi}\int_{-\infty}^\infty e^{-a^2x^2}e^{-i\xi x}\,dx\\[2ex] &=\frac{1}{2\pi}\int_{-\infty}^\infty e^{-a^2\left(x^2+\frac{i\xi}{a^2}x\right)}\,dx \end{align*}\] Complete the square: \[\begin{align*}-a^2\left(x^2+\frac{i\xi}{a^2}x\right)&=-a^2\left(x^2+\frac{i\xi}{a^2}x+\left(\frac{i\xi}{2a^2}\right)^2-\left(\frac{i\xi}{2a^2}\right)^2\right)\\[2ex] &=-a^2\left(\left(x+\frac{i\xi}{2a^2}\right)^2+\frac{\xi^2}{4a^4}\right)\\[2ex] &=-\left(ax+\frac{i\xi}{2a}\right)^2-\frac{\xi^2}{4a^2}\end{align*}\] A substitution will do the rest: \(y=ax+\dfrac{i\xi}{2a}\) with \(dy=a\,dx\).\[\large\begin{align*}\mathcal{F}\{e^{-a^2x^2}\}&=\frac{1}{2a\pi}\int_{-\infty}^\infty e^{-y^2-\frac{\xi^2}{4a^2}}\,dy \end{align*}\]
Anas.P
  • Anas.P
yes it was \[e^{t^{-2}}\] isn't it \[\frac{ 1 }{ \sqrt{2\pi} }\] instead of \[\frac{ 1 }{ {2\pi} }\] otherwise thank you very much... it had been bugging me for days...
anonymous
  • anonymous
I've seen a few variations of the transform's definition, things like \(\dfrac{1}{2\pi}\int e^{-i\xi x}\,dx\) and \(\int e^{-2\pi i\xi x}\,dx\) (which are identical) as well as \(\dfrac{1}{\sqrt{2\pi}}\) in place of \(\dfrac{1}{2\pi}\). (see here: http://mathworld.wolfram.com/FourierTransform.html ) I'm not sure myself about the details of the advantage to using one definition over another, but I think it has something to do with symmetry. As long as you're consistent, either way is fine.
Anas.P
  • Anas.P
cool..... thanks again

Looking for something else?

Not the answer you are looking for? Search for more explanations.