If f(x) = x+ tan x and g(x) is the inverse of f(x) then g'(x) is equal to..

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If f(x) = x+ tan x and g(x) is the inverse of f(x) then g'(x) is equal to..

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

aren't you trying to find the derivative of inverse at a particular point ?
answer is 1/(2+{g(x) - x}^2) and i have no clue

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

That doesn't seem right to me
at a particular point it would be easy na
maybe start with this : \[f(g(x)) = x\]
Since it's the inverse I plugged it in to get: \[x=g(x)+\tan g(x)\] Then differentiate: \[1=g'(x)+g'(x)\sec^2g(x) \] \[g'(x)=\frac{1}{1+\sec^2 g(x)}\]
Well that's why I said it doesn't seem right idk depends on what kind of answer you're looking for I guess.
thanks i get it... converting sec^2 g(x) to tan ^2 g(x) then substituting tan^2 from the eqn f(g(x)) = x
Nice :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question