anonymous
  • anonymous
MEDAL+FAN
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What is the missing exponent?
anonymous
  • anonymous
@Nnesha
Nnesha
  • Nnesha
\[\huge\rm (12^{-5})^2= 12^{??}\] you should know this one

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the answer is -10 please fan and medal
anonymous
  • anonymous
can you explain how you got it please?
anonymous
  • anonymous
multiply the exponents -5*2 = -10
anonymous
  • anonymous
what about -4?
anonymous
  • anonymous
what do you mean
anonymous
  • anonymous
look at the attachment
anonymous
  • anonymous
sorry -6 u multiply the exponents on top then u subtract from the top down
anonymous
  • anonymous
ok
anonymous
  • anonymous
fan and medal please
anonymous
  • anonymous
ond sec
anonymous
  • anonymous
done?
anonymous
  • anonymous
not yet.
Nnesha
  • Nnesha
\(\color{blue}{\text{Originally Posted by}}\) @Nnesha \[\huge\rm (12^{-5})^2= 12^{??}\] you should know this one \(\color{blue}{\text{End of Quote}}\) \[\huge\rm (x^m)^n =x^{m \times n}\] multiply the exponents
Nnesha
  • Nnesha
and then apply this exponent rule \[\huge\rm \frac{ x^m }{ x^n }=x^{m-n}\] when we divide same same bases we should `subtract` their exponents

Looking for something else?

Not the answer you are looking for? Search for more explanations.