anonymous
  • anonymous
What is the missing value? https://static.k12.com/bank_packages/files/media/mathml_6a898366c833b4d7194aa8d29fc91e60db252b97_1.gif A. −10 B. −2 C. 2 D. 10
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@jim_thompson5910
jim_thompson5910
  • jim_thompson5910
hint: \[\LARGE \frac{x^a}{x^b} = x^{a-b}\]
anonymous
  • anonymous
D 10?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
\[\LARGE \frac{x^a}{x^b} = x^{a-b}\] \[\LARGE \frac{3^{-6}}{3^{{}^\boxed{}}} = 3^{4}\] \[\LARGE \frac{3^{-6}}{3^{x}} = 3^{4}\] \[\LARGE 3^{-6-x} = 3^{4}\] set the exponents equal to one another and solve for x
anonymous
  • anonymous
You lost me.
jim_thompson5910
  • jim_thompson5910
where at?
anonymous
  • anonymous
The last part
jim_thompson5910
  • jim_thompson5910
when I went from \[\LARGE \frac{3^{-6}}{3^{x}} = 3^{4}\] to \[\LARGE 3^{-6-x} = 3^{4}\] ???
anonymous
  • anonymous
Yes
jim_thompson5910
  • jim_thompson5910
I used that rule I wrote in the hint. When you divide expressions like x^3 over x^2, you subtract the exponents
anonymous
  • anonymous
Is it a? -10
jim_thompson5910
  • jim_thompson5910
solve -6 - x = 10 for x
jim_thompson5910
  • jim_thompson5910
sorry I meant -6 - x = 4
anonymous
  • anonymous
negative - a negative = a positive = -6 - (-2) = 4 Right?
jim_thompson5910
  • jim_thompson5910
-6 - (-2) = 4 is false
jim_thompson5910
  • jim_thompson5910
-6 - (-2) = -4 is true so try again
anonymous
  • anonymous
@jim_thompson5910
1 Attachment
jim_thompson5910
  • jim_thompson5910
yes -6 - (-10) = -6 + 10 = 4
anonymous
  • anonymous
OKAY THANKS
jim_thompson5910
  • jim_thompson5910
no problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.