zmudz
  • zmudz
Let \(n\) be a positive integer. Show that the smallest integer greater than \((\sqrt{3} + 1)^{2n}\)is divisible by \(2^{n+1}.\) Hint: Prove that \(\lceil (\sqrt{3}+1)^{2n} \rceil = (\sqrt{3}+1)^{2n} + (\sqrt{3}-1)^{2n}.\)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amilapsn
  • amilapsn
you can use mathematical induction with binomial expansion.
anonymous
  • anonymous
Id probably say make a recurrence relation
zzr0ck3r
  • zzr0ck3r
A number can't be equal to itself plus a nonzero number...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Isn't that\[\lceil (\sqrt{3}+1)^{2n} \rceil = (\sqrt{3}+1)^{n} + (\sqrt{3}-1)^{n}.\]
amilapsn
  • amilapsn
\[\exists ! 0.abcd.... ~s.t.\] \[\lceil{(\sqrt{3}+1)^{2n}}\rceil=(\sqrt{3}+1)^{2n}+0.abcd.....\] \[But~ 0<(\sqrt{3}-1)^{2n}< 1\forall n\in \mathbb{Z}^+\] By binomial expansion: \[\small (\sqrt{3}+1)^{2n}=^{2n}C_0 (\sqrt{3})^{2n}+^{2n}C_1 (\sqrt{3})^{2n-1}+\ldots+^{2n}C_{2n-1} (\sqrt{3})^{1}+^{2n}C_{2n} 1 ~~(2n+1~Terms)\] \[\small (\sqrt{3}-1)^{2n}=^{2n}C_0 (\sqrt{3})^{2n}-^{2n}C_1 (\sqrt{3})^{2n-1}+\ldots-^{2n}C_{2n-1} (\sqrt{3})^{1}+^{2n}C_{2n} 1 ~~(2n+1~Terms)\] \[\small \therefore (\sqrt{3}+1)^{2n}+(\sqrt{3}-1)^{2n}=2 \left[^{2n}C_0 (\sqrt{3})^{2n}+^{2n}C_{2} (\sqrt{3})^{2n-2}+\ldots+^{2n}C_{2n-2} (\sqrt{3})^{2}+^{2n}C_{2n} 1\right] \] Since all the terms have even exponents of \(\sqrt{3}\) this will be an integer... \[\therefore \lceil{(\sqrt{3}+1)^{2n}}\rceil=(\sqrt{3}+1)^{2n}+(\sqrt{3}-1)^{2n}\] By mathematical induction we can show that.. \[2^{n+1}|\lceil{(\sqrt{3}+1)^{2n}}\rceil\]
zzr0ck3r
  • zzr0ck3r
suppose \(a=a+b\) where \(b\ne 0\). Then by cancelation \(b=0\) a contradiction. :)
amilapsn
  • amilapsn
@zzr0ck3r you've forgotten the ceiling... :) for example \(\lceil 2.5\rceil =3\)
zzr0ck3r
  • zzr0ck3r
Ahh, sorry on my phone and I thought it was just \([\). lol. I was going nuts...

Looking for something else?

Not the answer you are looking for? Search for more explanations.