anonymous
  • anonymous
Find the midpoint between two points on a number line if one of the points is at -7, and the other point is at 12. 5 9.5 2.5 -2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
calculusxy
  • calculusxy
M = midpoint x_1 and x_2 = the two points (numbers) on the number line \[M = \frac{ x_1 + x_2 }{ 2 }\]
calculusxy
  • calculusxy
Do you understand the formula?
calculusxy
  • calculusxy
@ltj12345.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes
calculusxy
  • calculusxy
So plug in the variables and then solve it. Tell me the answer once you get it so that I can confirm it with you.
anonymous
  • anonymous
ok
anonymous
  • anonymous
5
calculusxy
  • calculusxy
Let's check : \[M = \frac{ x_1 + x_2 }{ 2 } = \frac{ -7 + 12 }{ 2 } = \frac{ 5 }{ 2 } = 2.5\]
calculusxy
  • calculusxy
There might've been something wrong when you figured out 5. Did you catch your mistake?
anonymous
  • anonymous
yes
calculusxy
  • calculusxy
So your answer is 2.5 .
anonymous
  • anonymous
thanks
calculusxy
  • calculusxy
Great job!
calculusxy
  • calculusxy
You're welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.