dinamix
  • dinamix
another challenge who find this integral without use (Binomial theorem ) and google ;p
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
dinamix
  • dinamix
\[\int\limits_{0}^{\frac{ \pi }{ 2 }} \cos^6x\]
anonymous
  • anonymous
You reduce the order several times using the half-angle identity: \[\cos^2x=\frac{1+\cos2x}{2}\] So you have \[\begin{align*} \cos^6x&=\left(\frac{1+\cos2x}{2}\right)^3\\[2ex] &=\frac{1}{8}+\frac{3}{8}\cos2x+\frac{3}{8}\cos^22x+\frac{1}{8}\cos^32x\end{align*}\] and so on.
anonymous
  • anonymous
For odd powers of cosine, you can rewrite via the Pythagorean identity: \[\cos^{2k+1}x=\cos x\cos^{2k}x=\cos x(1-\sin^2x)^k\] Change of variables will reduce this sort of expression nicely.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Ah but you said without the binomial theorem... Okay. Recall that \[\int_a^b f(x)\,dx=\int_a^bf(a+b-x)\,dx\] This gives \[\int_0^{\pi/2}\cos^6x\,dx=\int_0^{\pi/2}\cos^6\left(\frac{\pi}{2}-x\right)\,dx=\int_0^{\pi/2}\sin^6x\,dx\]
dinamix
  • dinamix
problem with 1/8 *(cos^3(2x)) we modif it to 2/16*(cos^3x) i think , i hope understand it
dinamix
  • dinamix
sorry its 2/16*(cos^3(2x))*
anonymous
  • anonymous
Adding the integral of \(\cos^6x\) to both sides gives \[2\int_0^{\pi/2}\cos^6x\,dx=\int_0^{\pi/2}(\cos^6x+\sin^6x)\,dx\] The RHS contains a sum of cubes: \[\begin{align*} \cos^6x+\sin^6x&=a^6+b^6\\[2ex] &=(a^2+b^2)(a^4-a^2b^2+b^4)\\[2ex] &=(\cos^2x+\sin^2x)(\cos^4x-\cos^2x\sin^2x+\sin^4x)\\[2ex] &=\cos^4x-\cos^2x\sin^2x+\sin^4x \end{align*}\] How you deal with these terms would probably depend on what you mean by "not being able to use the binomial theorem".
dinamix
  • dinamix
suppose t=sin2x i think cuz dt= 2cos2x dx i think first answer is easy
dinamix
  • dinamix
cuz i see binomial theorem is very long
anonymous
  • anonymous
Right, your method for the cubed term is good. \[\int\left(\color{red}{\frac{1}{8}}+\color{red}{\frac{3}{8}\cos2x}+\frac{3}{8}\cos^22x+\color{red}{\frac{1}{8}\cos^32x}\right)\,dx\] The red terms are easy. However, I implicitly used the binomial theorem in order to obtain this expansion from \(\cos^6x\) in the first place.
anonymous
  • anonymous
Actually, all the terms are easy with that trig identity...
anonymous
  • anonymous
The way I understand your question is that you want to compute the integral without having to expand anything of the form \((a+b)^n\) for \(n\ge2\). Am I right?
dinamix
  • dinamix
yup
dinamix
  • dinamix
this what i mean dude
dinamix
  • dinamix
i think no away without use binomial theorem
anonymous
  • anonymous
Right, so the expansion above doesn't abide by your rules. Continuing where I left off: \[\begin{align*} \cos^6x+\sin^6x&=\cos^4x-\cos^2x\sin^2x+\sin^4x\\[2ex] &=\cos^4x-\frac{4}{4}\cos^2x\sin^2x+\sin^4x\\[2ex] &=\cos^4x-\left(\frac{1}{2}\sin x\cos x\right)^2+\sin^4x\\[2ex] &=\cos^4x-\left(\frac{1}{4}\sin 2x\right)^2+\sin^4x\\[2ex] &=\cos^4x-\frac{1}{16}\sin^2 2x+\sin^4x \end{align*}\] The middle term can be handled with another half-angle identity, \(\sin^2x=\dfrac{1-\cos2x}{2}\). So we have \[\begin{align*}2\int_0^{\pi/2}\cos^6x\,dx&=\int_0^{\pi/2}(\cos^6x+\sin^6x)\,dx\\[2ex] &=\int_0^{\pi/2}\left(\cos^4x-\frac{1}{32}(1-\cos4x)+\sin^4x\right)\,dx \end{align*}\] Using the same reasoning as before, you have \[\begin{align*}\int_0^{\pi/2}\cos^4x\,dx&=\int_0^{\pi/2}\sin^4x\,dx\\[2ex] 0&=\int_0^{\pi/2}(\cos^4x-\sin^4x)\,dx\\[2ex] &=\int_0^{\pi/2}(\cos^2x-\sin^2x)(\cos^2x+\sin^2x)\,dx\\[2ex] &=\int_0^{\pi/2}\cos2x\,dx\end{align*}\] leaving you with \[\int_0^{\pi/2}\cos^6x\,dx=\frac{1}{64}\int_0^{\pi/2}(\cos4x-1)\,dx\]
anonymous
  • anonymous
No wait, there's a mistake somewhere up there...
anonymous
  • anonymous
Still looking for the error, but I hope you see the general idea?
freckles
  • freckles
did you change 4/4 to 1/4?
freckles
  • freckles
\[\begin{align*} \cos^6x+\sin^6x&=\cos^4x-\cos^2x\sin^2x+\sin^4x\\[2ex] &=\cos^4x-\color{red}{\frac{4}{4}}\cos^2x\sin^2x+\sin^4x\\[2ex] &=\cos^4x-\left(\color{red}{\frac{1}{2}}\sin x\cos x\right)^\color{red}{2}+\sin^4x\\[2ex] &=\cos^4x-\left(\frac{1}{4}\sin 2x\right)^2+\sin^4x\\[2ex] &=\cos^4x-\frac{1}{16}\sin^2 2x+\sin^4x \end{align*}\]
anonymous
  • anonymous
There it is!
anonymous
  • anonymous
Oh actually a much bigger mistake: the integral of \(\cos^4x+\sin^4x\) is not zero.
anonymous
  • anonymous
So in fact, we're back to this stage: \[\begin{align*}2\int_0^{\pi/2}\cos^6x\,dx&=\int_0^{\pi/2}(\cos^6x+\sin^6x)\,dx\\[2ex] &=\int_0^{\pi/2}\left(\cos^4x-\frac{1}{32}(1-\cos4x)+\sin^4x\right)\,dx\\[2ex] &=\int_0^{\pi/2}\left(2\cos^4x-\frac{1}{32}(1-\cos4x)\right)\,dx\end{align*}\] ...which WA is also telling me is not true. Hmm...
dinamix
  • dinamix
its 2/2 not 1/2
anonymous
  • anonymous
Alright, backing up a bit (again): \[\begin{align*} 2\int_0^{\pi/2}\cos^6x\,dx&=\int_0^{\pi/2}\left(\cos^4x+\sin^4x-\cos^2x\sin^2x\right)\,dx&(1)\\[2ex] &=\int_0^{\pi/2}\left(\cos^4x+\sin^4x-\frac{1}{4}\sin^22x\right)\,dx&(2)\\[2ex] &=\int_0^{\pi/2}\left(2\cos^4x-\frac{1}{4}\sin^22x\right)\,dx \end{align*}\] (1) http://www.wolframalpha.com/input/?i=2+integral+cos%5E6x+over+0%2Cpi%2F2%3Dintegral+%28sin%5E4x%2Bcos%5E4x-cos%5E2x+sin%5E2x%29+over+0%2Cpi%2F2 (2) http://www.wolframalpha.com/input/?i=cos%5E2x+sin%5E2x (I guess I didn't make a mistake here after all @freckles :P)
dinamix
  • dinamix
@freckles
dinamix
  • dinamix
is right
dinamix
  • dinamix
4/4 will be 2^2/(2^2) and when 2/2 not 1/2 look good
anonymous
  • anonymous
\[\begin{align*} \int_0^{\pi/2}\cos^6x\,dx&=\int_0^{\pi/2}\cos^4x\,dx-\frac{1}{8}\int_0^{\pi/2}\sin^22x\,dx\\[2ex] &=\int_0^{\pi/2}\cos^4x\,dx-\underbrace{\frac{1}{16}\int_0^{\pi/2}(1-\cos4x)\,dx}_{\text{easy}} \end{align*}\]
freckles
  • freckles
A way by integration by parts: \[ \\ \int\limits \cos^6(x) dx= \int\limits \cos(x) \cos^5(x) dx \\ \int\limits \cos(x) \cos^5(x) dx=\sin(x) \cos^5(x)+5 \int\limits \sin^2(x) \cos^4(x) dx \\ \int\limits \cos^6(x) dx=\sin(x) \cos^5(x)+5 \int\limits (1-\cos^2(x)) \cos^4(x) dx \\ \int\limits \cos^6(x) dx=\sin(x) \cos^5(x)+5 \int\limits \cos^4(x) dx -5 \int\limits \cos^6( x) dx \\ 6 \int\limits \cos^6(x) dx= \sin(x) \cos^5(x)+ \int\limits 5 \cos^4(x) dx\] --- \[\int\limits \cos^4(x) dx=\int\limits \cos(x) \cos^3(x) dx \\ =\sin(x) \cos^3(x) + 3 \int\limits \sin^2(x) \cos^2(x) dx \\ =\sin(x) \cos^3(x)+3 \int\limits (1-\cos^2(x)) \cos^2(x) dx \\ =\sin(x) \cos^3(x) +\int\limits 3 \cos^2(x) dx -3 \int\limits \cos^4(x) dx \\ \text{ so .. } \\ 4 \int\limits \cos^4(x) dx=\sin(x) \cos^3(x)+3 \int\limits \cos^2(x) dx \text{ now we can say } \\ \int\limits \cos^6 (x) dx=\sin(x)\cos^5(x)+\frac{5}{4} \sin(x)\cos^3(x)+\frac{15}{4} \int\limits \cos^2(x) dx\] and we can use that double angle identity for that one thingy let me check me work real quick
freckles
  • freckles
oops forgot to divide by 6
freckles
  • freckles
\[6 \int\limits \cos^6(x) dx=\sin(x) \cos^5(x)+\frac{5}{4} \sin(x) \cos^3(x)+\frac{15}{4} \int\limits \cos^2(x) dx \\ \text{ should be the last line }\] then divide by 6
anonymous
  • anonymous
Yeah, nice how the first two terms on the right disappear.
anonymous
  • anonymous
If you're feeling particularly masochistic, you can also use the tangent half-angle substitution, but I should figure out how to compute \(\displaystyle\int_0^{\pi/2}\cos^4x\,dx\) first (without expanding, of course)...
freckles
  • freckles
\[\int\limits\limits \cos^6(x) dx= \frac{1}{6} \sin(x) \cos^5(x)+\frac{5}{24} \sin(x) \cos^3(x)+\frac{15}{24} \int\limits\limits \frac{1}{2}(1+\cos(2x)) dx \\ \int\limits\limits \cos^6(x) dx=\frac{1}{6} \sin(x) \cos^5(x)+\frac{5}{24} \sin(x) \cos^3(x) +\frac{15}{48}(x+\frac{1}{2} \sin(2x)) +C \]
freckles
  • freckles
its so cute how many different forms the answer can take when we talk about trig functions
freckles
  • freckles
well for the indefinite integral (I ignored the limits in my answer)
anonymous
  • anonymous
Here's one way: \[\begin{align*}\cos^4x&=\cos^2x(1-\sin^2x)\\[2ex]&=\cos^2x-\cos^2x\sin^2x\\[2ex]&=\cos^2x-\frac{1}{4}\sin^22x\\[2ex]&=\frac{1+\cos2x}{2}-\frac{1-\cos4x}{8} \end{align*}\] And now integrating should be easy!
anonymous
  • anonymous
So... all this work to say, finally, that \[\begin{align*} \int_0^{\pi/2}\cos^6x\,dx&=\int_0^{\pi/2}\left(\frac{1+\cos2x}{2}-\frac{1-\cos4x}{8}-\frac{1-\cos4x}{16}\right)\,dx\\[2ex] &=\int_0^{\pi/2}\left(\frac{1+\cos2x}{2}-\frac{3(1-\cos4x)}{16}\right)\,dx\end{align*}\] http://www.wolframalpha.com/input/?i=integrate+%28%281%2Bcos2x%29%2F2-3%2F16%281-cos4x%29%29+over+0%2Cpi%2F2%2C+integrate+cos%5E6x+over+0%2Cpi%2F2 Feels good.
dinamix
  • dinamix
@freckles u are amazing ,i know method by parts but i think will be hard when use it here , wow super smart ty
anonymous
  • anonymous
As useful as identities are, I'll take binomial expansion over them any day :P @freckles
freckles
  • freckles
@dinamix for really really interesting integration questions you should look at @SithsAndGiggles 's profile he is truly a master of integration
dinamix
  • dinamix
@SithsAndGiggles , @freckles ty i learn to much rules , but i want see yours opinion about this challenge
anonymous
  • anonymous
Thanks @freckles, but I'm hardly a master - there are far more techniques and details yet for me to learn/discover before I'm at that level :3

Looking for something else?

Not the answer you are looking for? Search for more explanations.