anonymous
  • anonymous
help me please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
@Michele_Laino
Michele_Laino
  • Michele_Laino
we can make explicit the sum notation like below: \[\large \begin{gathered} \sum\limits_{k = 1}^4 {{{\left( { - 1} \right)}^k}\left( {k + 11} \right) = } {\left( { - 1} \right)^1}\left( {1 + 11} \right) + {\left( { - 1} \right)^2}\left( {2 + 11} \right) + \hfill \\ \hfill \\ + {\left( { - 1} \right)^3}\left( {3 + 11} \right) + {\left( { - 1} \right)^4}\left( {4 + 11} \right) = ... \hfill \\ \end{gathered} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
wow thats confusing
Michele_Laino
  • Michele_Laino
your sum is composed by four terms, since k goes from 1 to 4
anonymous
  • anonymous
ok so what do i do
Michele_Laino
  • Michele_Laino
first term is: \[\large {\left( { - 1} \right)^1}\left( {1 + 11} \right) = - 1 \cdot 12 = ...?\]
anonymous
  • anonymous
12 maybe
Michele_Laino
  • Michele_Laino
-1*12 = -12 right?
Michele_Laino
  • Michele_Laino
\[\Large {\left( { - 1} \right)^1}\left( {1 + 11} \right) = \left( { - 1} \right) \cdot 12 = - 12\]
anonymous
  • anonymous
ohh ok
Michele_Laino
  • Michele_Laino
second term is: \[\Large {\left( { - 1} \right)^2}\left( {2 + 11} \right) = 1 \cdot 13 = ...?\]
anonymous
  • anonymous
13
Michele_Laino
  • Michele_Laino
correct!
Michele_Laino
  • Michele_Laino
third term is: \[\large {\left( { - 1} \right)^3}\left( {3 + 11} \right) = \left( { - 1} \right) \cdot 14 = ...?\]
anonymous
  • anonymous
-14
Michele_Laino
  • Michele_Laino
yes!
Michele_Laino
  • Michele_Laino
finally, fourth term is: \[\Large {\left( { - 1} \right)^4}\left( {4 + 11} \right) = 1 \cdot 15 = ...?\]
anonymous
  • anonymous
15
Michele_Laino
  • Michele_Laino
yes!
Michele_Laino
  • Michele_Laino
therefore your sum is: \[ \Large - 12 + 13 - 14 + 15 = ...?\]
anonymous
  • anonymous
17
Michele_Laino
  • Michele_Laino
using the associative property of addition, we can rewrite that sum as below: \[\large - 12 + 13 - 14 + 15 = \left( { - 12 - 14} \right) + \left( {13 + 15} \right) = ...?\]
anonymous
  • anonymous
-52
Michele_Laino
  • Michele_Laino
hint: \[\large \begin{gathered} - 12 + 13 - 14 + 15 = \left( { - 12 - 14} \right) + \left( {13 + 15} \right) = \hfill \\ \hfill \\ = - 26 + 28 = 28 - 26 = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
2
Michele_Laino
  • Michele_Laino
that's right!

Looking for something else?

Not the answer you are looking for? Search for more explanations.