anonymous
  • anonymous
**please help!!** medals rewarded! What is the area of the sector in the circle shown below?
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
jdoe0001
  • jdoe0001
\(\textit{sector of a circle}=\cfrac{\theta \pi r^2}{360}\qquad \begin{cases} r\to radius\\ \theta\to \textit{angle, in degrees} \end{cases}\)
anonymous
  • anonymous
can you help me break this down? @jdoe0001

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jdoe0001
  • jdoe0001
hmmm well.. check what your "radius" is and check your angle then just plug and chug
anonymous
  • anonymous
I got 3749.38?
anonymous
  • anonymous
jdoe0001
  • jdoe0001
hmmm need to check your PEMDAS notice, \(\textit{sector of a circle}=\cfrac{\theta \pi r^2}{360}\qquad \begin{cases} r\to radius\to &10\\ \theta\to \textit{angle, in degrees}\to &37 \end{cases} \\ \quad \\ \cfrac{37\cdot \pi \cdot 10^2}{360}\implies ?\)
anonymous
  • anonymous
32.27?
jdoe0001
  • jdoe0001
yes
jdoe0001
  • jdoe0001
\(32.27 in^2\) that is
anonymous
  • anonymous
thanks! could you help me with another? @jdoe0001 An angle measure of 82 degrees is equivalent to ____ radians. Round your answer to the nearest hundredth when necessary.
jdoe0001
  • jdoe0001
ok.. well.. how many say.... degrees in \(\pi\) radians?
anonymous
  • anonymous
3.14?
anonymous
  • anonymous
I have no idea, Im really bad at math
jdoe0001
  • jdoe0001
\(\large \pi = 3.14^o?\)
anonymous
  • anonymous
yes?
anonymous
  • anonymous
jdoe0001
  • jdoe0001
|dw:1440719540872:dw|
anonymous
  • anonymous
would it be 82/3.14? im so confused
jdoe0001
  • jdoe0001
hmmm nope... well. check your Unit Circle, see how many degrees are in a \(\large \pi\) firstly
anonymous
  • anonymous
180?
jdoe0001
  • jdoe0001
http://www.shelovesmath.com/wp-content/uploads/2012/11/Unit-Circle1.png <--- notice this Unit Circle so... hmm yes 180
anonymous
  • anonymous
ok
jdoe0001
  • jdoe0001
\(\begin{array}{ccllll} degrees&radians \\\hline\\ 180&\pi \\ 82&x \end{array}\implies \cfrac{180}{82}=\cfrac{\pi }{x}\implies x=\cfrac{82\cdot \pi }{180}\)
jdoe0001
  • jdoe0001
anyhow, "x" is how many degrees are in 82 :)
jdoe0001
  • jdoe0001
or rather, how many radians are in 82 degrees
anonymous
  • anonymous
1.43116999 radians?
anonymous
  • anonymous
is that the answer?
anonymous
  • anonymous
jdoe0001
  • jdoe0001
yeap
jdoe0001
  • jdoe0001
if I recall correctly, 1 radian is about 51 degrees so 82 is about 1.4, sure
anonymous
  • anonymous
thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.