Destinyyyy
  • Destinyyyy
What type of solution is this?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Destinyyyy
  • Destinyyyy
Compute the discriminant. x^2-6x-5=0
Destinyyyy
  • Destinyyyy
Answer-> 56
Destinyyyy
  • Destinyyyy
I know if the answer is a negative it is no solution. And if it equals 0 it is exactly one solution.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Destinyyyy
  • Destinyyyy
Is this one an infinite number of real solutions? two unequal real solutions? two imaginary solutions?
ChillOut
  • ChillOut
Two unequal real solutions. Let Δ be the discriminant. If Δ<0, it has complex solutions. if Δ=0, it has one real solution. if Δ>0, it has 2 real unequal solutions.
Destinyyyy
  • Destinyyyy
Thank you.. For <0 I dont have that as an option
Destinyyyy
  • Destinyyyy
infinite number of real solutions two unequal real solutions two imaginary solutions one real solution
Destinyyyy
  • Destinyyyy
The one im on now has -20 as the answer
Destinyyyy
  • Destinyyyy
Its two imaginary solutions.. But what does the number have to be for it to be infinite number of real numbers?
Destinyyyy
  • Destinyyyy
@Nnesha
dinamix
  • dinamix
u find 2 solution for this eqution ax^2+bx+c when u c is negative and a is positive
anonymous
  • anonymous
The graph of a quadratic function is a parabola. It is impossible for there to be an infinite number of solutions, i.e. an infinite number of x-intercepts.
Destinyyyy
  • Destinyyyy
Okay.. So the correct answers are two unequal real solutions example--> 56 Two imaginary example --> -20 One real solution example--> 0
Destinyyyy
  • Destinyyyy
Thank for everyone's help
anonymous
  • anonymous
You're welcome

Looking for something else?

Not the answer you are looking for? Search for more explanations.