math

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

What about it?
|dw:1440720978922:dw|
are you familiar with the rule \[\Large x^{-k} = \frac{1}{x^k}\] ??

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

no
the rule is that if you have a negative exponent, you take the reciprocal of the base to make the exponent positive in this case,\[\Large 3^{-3} = \frac{1}{3^3}\]
other examples \[\Large 2^{-7} = \frac{1}{2^7}\] \[\Large 9^{-4} = \frac{1}{9^4}\]
|dw:1440721304965:dw|
now you need to simplify the following |dw:1440721342332:dw|
|dw:1440721303495:dw|
is that a p? or a q? or a 9? (see circled) |dw:1440721502919:dw|
that was a p sorry got connfused |dw:1440721443290:dw|
ok now simplify that and you'll be done
think of p as p/1
|dw:1440721767667:dw|
when dividing 2 fractions, flip the second fraction and multiply
what would i get?
like p=27?
|dw:1440721912391:dw|
2 and 27p
|dw:1440721937428:dw|
yea but i still get 1/27p
\[\Large \frac{1}{27p}\] is the answer
oh ok thank you
if i have a diff question later ill post it
no problem
i need help
|dw:1440724201473:dw|
needs positive exponents,simplefy
use the same rule to get |dw:1440724750331:dw|
so you need to simplify \[\LARGE \frac{1}{(-8v)^2}*w^3\]
so no multiplying?
you do multiply think of the w^3 as w^3 over 1
\[\LARGE \frac{1}{(-8v)^2}*w^3 = \frac{1}{(-8v)^2}*\frac{w^3}{1}\]
then multiply straight across
also, simplify (-8v)^2
|dw:1440725573970:dw|
it should be \[\Large \frac{w^3}{64v^2}\]
you square the -8 to get 64 you square the v to get v^2
ok
what about this|dw:1440725832639:dw|
Use the rule \[\LARGE \frac{x^a}{x^b} = x^{a-b}\]
|dw:1440726015179:dw|
so for example \[\Large \frac{B^{12}}{B^{8}} = B^{12-8} = B^4\] this is just an example and not the answer
ok
i think thats all thank you
glad to be of help
can i ask you 2 more questions?
|dw:1440729886308:dw|
think of x as x^1 y as y^1 then use that last rule I posted above
|dw:1440730407539:dw|
do the same for y and z
and of course, 32 over -8 = -4

Not the answer you are looking for?

Search for more explanations.

Ask your own question