anonymous
  • anonymous
I really appreciate the help! How do I find sin(11pi/3)? I might have a pop quiz tomorrow and I really need help to figure this out. Thanks!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@ganeshie8 @Michele_Laino @zepdrix @Luigi0210 @Compassionate @Whitemonsterbunny17 @adrynicoleb @Xmoses1
Compassionate
  • Compassionate
\[\sin \frac{ 11 \times 3.14 }{ 3 }\]
Xmoses1
  • Xmoses1
I wish i would have paid attention in high school...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@Compassionate but how do I calculate it? I know the answer is sqrt(2)/2.
anonymous
  • anonymous
@Compassionate I think there is a graph method, but I don't get it.
anonymous
  • anonymous
Someone help please ;_;
Michele_Laino
  • Michele_Laino
hint: \[\Large \frac{{11\pi }}{3} = 3\pi + \frac{{2\pi }}{3}\] then we have to use the formula of addition for "sin" function
anonymous
  • anonymous
what is that?
anonymous
  • anonymous
Is it sinacosb+sinbcosa?
Michele_Laino
  • Michele_Laino
yes! \[\Large \begin{gathered} \sin \left( {\frac{{11\pi }}{3}} \right) = \sin \left( {3\pi + \frac{{2\pi }}{3}} \right) = \hfill \\ \hfill \\ = \sin \left( {3\pi } \right)\cos \left( {\frac{{2\pi }}{3}} \right) + \cos \left( {3\pi } \right)\sin \left( {\frac{{2\pi }}{3}} \right) = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
I don't really understand where to go from there.
Michele_Laino
  • Michele_Laino
it is simple, we have these values: \[\Large \begin{gathered} \sin \left( {3\pi } \right) = 0 \hfill \\ \cos \left( {\frac{{2\pi }}{3}} \right) = - \frac{1}{2} \hfill \\ \cos \left( {3\pi } \right) = - 1 \hfill \\ \sin \left( {\frac{{2\pi }}{3}} \right) = \frac{{\sqrt 3 }}{2} \hfill \\ \end{gathered} \] please substitute them into my formula above
anonymous
  • anonymous
-sqrt(3)/2
Michele_Laino
  • Michele_Laino
hint: \[\Large \begin{gathered} \sin \left( {\frac{{11\pi }}{3}} \right) = \sin \left( {3\pi + \frac{{2\pi }}{3}} \right) = \hfill \\ \hfill \\ = \sin \left( {3\pi } \right)\cos \left( {\frac{{2\pi }}{3}} \right) + \cos \left( {3\pi } \right)\sin \left( {\frac{{2\pi }}{3}} \right) = \hfill \\ \hfill \\ = 0 \cdot \left( { - \frac{1}{2}} \right) + \left( { - 1} \right) \cdot \left( {\frac{{\sqrt 3 }}{2}} \right) = ...? \hfill \\ \end{gathered} \]
anonymous
  • anonymous
yup, thanks for the help!
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
Hopefully I can ace the pop quiz if it is tomorrow! :D Now to sleep.
anonymous
  • anonymous
\[\sin(n\pi+\theta)=(-1)^n.\sin(\theta) \forall n \in \mathbb{Z}^+\mathbb{Z}^-\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.