NaviAn
  • NaviAn
Help me to demonstrate this integral, please :)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
NaviAn
  • NaviAn
1 Attachment
anonymous
  • anonymous
it's integration by parts. \[\int\limits u~dv=uv-\int\limits v~du\] \[u = x^n\] \[dv=e^x dx\]
anonymous
  • anonymous
\[\int\limits f(x).g(x)dx=f(x).\int\limits g(x) dx-\int\limits \big [f'(x) \int\limits g(x)dx \big ]dx\] This is formula for finding integral of a product of two functions, the process is known as integration as parts you can also exchange f and g \[\int\limits f(x).g(x)dx=g(x).\int\limits f(x) dx-\int\limits \big [g'(x) \int\limits f(x)dx \big ]dx\] Out of these 2 formulae, we select the one which is easier and less complicated of course, sometimes it may even be unsolvable one way around This method is also useful for finding integrals of a single function, in these cases we can take second function as a constant function 1 example \[\int\limits \ln(x)dx=\int\limits \ln(x).1dx=\ln(x).\int\limits1.dx-\int\limits \big [\frac{1}{x}.\int\limits 1.dx\big]dx\] \[\implies \int\limits \ln(x)dx=\ln(x).x-\int\limits[\frac{1}{x}.x]dx=x\ln(x)-\int\limits dx=x\ln(x)-x+C\] You may factor out the x \[\int\limits \ln(x)dx=x(\ln|x|-1)+C\] If we take ln x as second function we can't solve it because we don't know the integral of ln x, that's the whole point of that integral We are taking mod inside ln because ln only takes positive values

Looking for something else?

Not the answer you are looking for? Search for more explanations.