anonymous
  • anonymous
Solve the following system of equations y = −x2 + 4 y = 2x + 1 Can someone help me with this one? I got no answer but I think it's wrong
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Vocaloid
  • Vocaloid
-x^2 + 4 = 2x + 1 -x^2 - 2x + 3 = 0 factor
anonymous
  • anonymous
would it be x = 1 or x = -3 ?
Abhisar
  • Abhisar
Do you mean there are two equations \(\sf y = −x2 + 4~and~y = 2x + 1\) ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yeah
Abhisar
  • Abhisar
You can subtract second equation from first one to get a quadratic equation in terms of x only and then solve it to find the value of x. Finally substitute this value of x in any of the parent equation to find the value of y
anonymous
  • anonymous
So -x^2 +4 = 2x + 1 and I still get x=1 or -3
Abhisar
  • Abhisar
|dw:1440863625115:dw|
Abhisar
  • Abhisar
So that gives you a quadratic equation \(\sf x=\Large \frac{2 \pm \sqrt{2^2-(4 \times-1 \times 3)}}{2}\)
Abhisar
  • Abhisar
Solve for c:

Looking for something else?

Not the answer you are looking for? Search for more explanations.