Spring98
  • Spring98
Medals!! Simplify 12^3/12^7.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
javalos01
  • javalos01
ik
javalos01
  • javalos01
it
Spring98
  • Spring98
?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

rishavraj
  • rishavraj
\[\frac{ 1 }{ a^2 } = a^{-2}~~and~~ a^x \times a^y = a^{x+ y}\]
Spring98
  • Spring98
so how do i do it?
rishavraj
  • rishavraj
\[\frac{ 1 }{ 12^{7} } = 12^{-7}\]
CGGURUMANJUNATH
  • CGGURUMANJUNATH
a^x / a^y =a^(x-y)
Jhannybean
  • Jhannybean
\[\frac{12^3}{12^7} = 12^{3-7} = 12^?\]
CGGURUMANJUNATH
  • CGGURUMANJUNATH
a=12,x=3,y=7
Jhannybean
  • Jhannybean
\[\large 12^{-?} \iff \frac{1}{12^?}\]
Spring98
  • Spring98
4
rishavraj
  • rishavraj
so it is \[\frac{ 1 }{ 12^4 } \] now wht??
rishavraj
  • rishavraj
remember \[\frac{ 1 }{ a } = a^{-1}\]
Spring98
  • Spring98
oh so would it be - 1/12^4?
anonymous
  • anonymous
12^4
anonymous
  • anonymous
that would be you answer
rishavraj
  • rishavraj
nah @yinkim52001
rishavraj
  • rishavraj
@Spring98 u done???
anonymous
  • anonymous
yah why not?
anonymous
  • anonymous
there's no negative exponents .
rishavraj
  • rishavraj
@yinkim52001 remember \[\frac{ 1 }{ a } = a^{-1}\]
Jhannybean
  • Jhannybean
You never leave your answers with negative exponents unless it's called for. Therefore \[\frac{1}{12^4} = \frac{1}{12\cdot 12\cdot 12\cdot 12}\] Whatever that is is your answer.
Spring98
  • Spring98
12^4 is the answer right?
Jhannybean
  • Jhannybean
No.
anonymous
  • anonymous
no its 1/12^4
anonymous
  • anonymous
i see why its 1/12^4
rishavraj
  • rishavraj
@Jhannybean its asking to just simplfy it ..... so i think we may just write in exponential form
Jhannybean
  • Jhannybean
You can have various simplifications @rishavraj either in positive exponential form, fully expanded form, or even negative exponent form. They would all be correct.
Spring98
  • Spring98
what is the answer then ? 1/12^4?
anonymous
  • anonymous
\[\frac{ 1 }{ 12^{4} }\] thats your answer spring
anonymous
  • anonymous
yup
Jhannybean
  • Jhannybean
\[\frac{12^{-3}}{12^7} = 12^{-4} =\frac{1}{12^4} = \frac{1}{20736}\] TRy solving the next one yourself @Spring98
Spring98
  • Spring98
thanks @yinkim52001
anonymous
  • anonymous
No problem

Looking for something else?

Not the answer you are looking for? Search for more explanations.