anonymous
  • anonymous
Rationalize the numerator:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[(\sqrt{x} - \sqrt{x+h}) / h \]
freckles
  • freckles
multiply top and bottom by conjugate of top
anonymous
  • anonymous
I understand how to do it. You get -1 for the top, but not sure of the bottom.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

freckles
  • freckles
\[\frac{\sqrt{x}-\sqrt{x+h}}{h} \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}\]
freckles
  • freckles
you get -1 on top before or after canceling common factors after the multiplication part
freckles
  • freckles
and that was a question
anonymous
  • anonymous
I know the answer for the bottom is \[\sqrt{x} + \sqrt{x+h}\] but how do you get that with the multiplied h?
freckles
  • freckles
\[\frac{(x)-(x+h)}{h(\sqrt{x}+\sqrt{x+h})}\] you do understand we have -h/h=-1 right?
anonymous
  • anonymous
Yes
freckles
  • freckles
so what is the question exactly
anonymous
  • anonymous
How does it work out for the bottom?
freckles
  • freckles
after using -h/h=-1 you are left with sqrt(x)+sqrt(x+h) there is nothing else to do unless you have a limit question here
freckles
  • freckles
sqrt(x)+sqrt(x+h) on the bottom*
freckles
  • freckles
\[\frac{(x)-(x+h)}{h(\sqrt{x}+\sqrt{x+h})}=\frac{-h}{h} \frac{1}{\sqrt{x}+\sqrt{x+h}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.