lim x -> -4 (1/4 + 1/x)/(4+x) The answer is -1/16 Here is what I did: (1/4 + 1/x)(1/4 + 1/x) 1/16+2/4x+1/x^2 1/16+2/4(-4)+1/(-4)^2 1/16-2/16+1/16 0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

lim x -> -4 (1/4 + 1/x)/(4+x) The answer is -1/16 Here is what I did: (1/4 + 1/x)(1/4 + 1/x) 1/16+2/4x+1/x^2 1/16+2/4(-4)+1/(-4)^2 1/16-2/16+1/16 0

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I know this guy solved it: https://www.youtube.com/watch?v=9_RUnj-5wEk, but I don't get why my technique doesn't work.
\(\begin{align*}\dfrac{\dfrac{1}{4} + \dfrac{1}{x}}{4 + x} &= \left(\dfrac{1}{4} + \dfrac{1}{x}\right) \div (4 + x) \\&= \left(\dfrac{x}{4x} + \dfrac{4}{4x}\right) \div (4 + x) \\&= \left(\dfrac{x + 4}{4x} \times \dfrac{1}{x + 4}\right)\\&=\dfrac{1}{4x}\end{align*}\) \(\lim_{x \to -4}\dfrac{1}{4x} = \dfrac{1}{4(-4)} = -\dfrac{1}{16}\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thank you! But, I was more wondering why my answer didn't work... because, I know there is something wrong about it, but I can't spot what.
Are these 2 equal- 1/(4+x) and (1/4+1/x)
I think u made a mistake in the 1st step
@vvbb you can discover what you did wrong for yourself.
Can't I use this formula for the first step? (a/b)/(c/d)=(a/b)*(c/d)
You shouldn't use that formula and what you just posted demonstrates why. Instead use this: \(\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}} = \dfrac{a}{b} \div \dfrac{c}{d} = \dfrac{a}{b} \times \dfrac{d}{c}\)
okay

Not the answer you are looking for?

Search for more explanations.

Ask your own question