anonymous
  • anonymous
Check on my answer please Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth. A rocket is launched from atop a 101-foot cliff with an initial velocity of 116 ft/s. a. Substitute the values into the vertical motion formula h = -16t^2 + vt + c. Let h = 0 b. Use the quadratic formula find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second. A) 0 = -16t^2+101t+116; 8s B) 0 = -16t^2+116t+101; 0.8s C) 0 = -16t^2+101t+116; 0.8s D) 0 = -16t^2+116t+101; 8s - my answer
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Michele_Laino
  • Michele_Laino
after a substitution, we get: \[\Large h = - 16{t^2} + 116t + 101\]
anonymous
  • anonymous
your answer is correct.
Michele_Laino
  • Michele_Laino
the rocket will reach its maximum height at time: \[\Large {t_1} = \frac{{{v_0}}}{g} = \frac{{116}}{{32}} = 3.625\sec \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Michele_Laino
  • Michele_Laino
and it will return on the earth surface at time: \[\large {t_2} = \sqrt {{{\left( {\frac{{{v_0}}}{g}} \right)}^2} + \frac{{2{h_0}}}{g}} = 4.411\sec \]
Michele_Laino
  • Michele_Laino
so total time is: \[\Large 3.625 + 4.411 \cong 8.04\sec \]
Michele_Laino
  • Michele_Laino
so, you are right!
Michele_Laino
  • Michele_Laino
I have applied the equation of dynamic!
anonymous
  • anonymous
thank you both :)
Michele_Laino
  • Michele_Laino
:)
anonymous
  • anonymous
@Michele_Laino you are good in Physics. ^__^
Michele_Laino
  • Michele_Laino
thanks! :) @ASAAD123

Looking for something else?

Not the answer you are looking for? Search for more explanations.