idku
  • idku
I got a question about vector problem. (Please, I just started don't through hard stuff at me).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
idku
  • idku
Two balls are thrown from the same height as shown. The \(\color{red}{\rm red}\) ball is thrown with velocity \(\color{red}{ \vec v}\) in the vertical direction. The \(\color{blue}{\rm blue}\) ball is thrown with twice the speed of the red ball at an angle of 30\(^\circ\) with respect to the horizontal. Which ball will go higher? |dw:1440947270312:dw|
idku
  • idku
The choices they gave me are: A) the red ball B) the blue ball C) the maximum height for both balls is the same D) it depends on the value of v but I really want to figure how to do these.
Michele_Laino
  • Michele_Laino
hint: the vertical speed of the red ball is V whereas the vertical speed of the blue ball is 2V*sin(30)=2*V/2=V

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

idku
  • idku
V \(?\) 2V \(\sin(30)\) V \(?\) 2V \(\sin(30)\) V \(?\) 2V \((1/2)\) V \(=\) V \(\)
idku
  • idku
So they will reach the same height, right?
Michele_Laino
  • Michele_Laino
yes!
idku
  • idku
(regardless of the V)
Michele_Laino
  • Michele_Laino
yes!
idku
  • idku
I mean V is still greater than zero, just from the problem. Not that we even need to know this. Thank you!! Just one more thing, so for a horizontal motion of some vector \(\bf v\), with a degree of \(\theta\), the ball will go a horizontal distance D of: \({\rm D}={\bf v}\times \sin(\theta)\)
idku
  • idku
(right? )
Michele_Laino
  • Michele_Laino
in order to compute the horizontal distance, we have to consider the horizontal component of the speed of the blue ball, whose magnitude is: 2*V cos(30)=sqrt(3)*V
Michele_Laino
  • Michele_Laino
\[\Large {v_x} = 2V\cos 30 = 2V \cdot \frac{{\sqrt 3 }}{2} = \sqrt 3 V\]
idku
  • idku
So, in general, if we had: |dw:1440947970856:dw| then the horizontal distance is: \({\rm D}={\bf v}\times \sin(\theta) \times {\bf v} \cos(\theta)\)
Michele_Laino
  • Michele_Laino
no, the horizontal distance is: \[\Large D = {v_x}\Delta t\] where \Delta t is the total flying time
idku
  • idku
and Vx is what exactly?
Michele_Laino
  • Michele_Laino
Vx is: \[\Large {v_x} = V\cos \theta \]
idku
  • idku
\(\large {\rm D_{horizontal }}=\left(\Delta t\right) {\bf v} \cos(\theta)\)
Michele_Laino
  • Michele_Laino
In general, referring to your last drawing, the total flying time is: \[\Large \Delta t = \frac{{2V\sin \theta }}{g}\]
idku
  • idku
g is -9.8 m/s
idku
  • idku
just clarifying for myself
Michele_Laino
  • Michele_Laino
so teh horizontal distance is: \[\Large D = {v_x}\Delta t = V\cos \theta \cdot \frac{{2V\sin \theta }}{g} = \frac{{{V^2}}}{g}\sin \left( {2\theta } \right)\]
Michele_Laino
  • Michele_Laino
the*
idku
  • idku
yes, that makes sense:)
Michele_Laino
  • Michele_Laino
yes! g= 9.8 m/sec^2 or g= 32 feet/sec^2
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.