anonymous
  • anonymous
How to integrate the following: 2x/(x^3-1)
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[I=\int\limits \frac{2 x }{\left( x-1 \right)\left( x^2+x+1 \right) }dx\] \[\frac{ 2x }{\left( x-1 \right)\left( x^2+x+1 \right) }=\frac{ A }{ x-1 }+\frac{ Bx+C }{ x^2+x+1 }\] \[2x=A \left( x^2+x+1 \right)+\left( Bx+C \right)\left( x-1 \right)\] equate terms like powers of x 0=A+B 2=A-B+C 0=A-C find A,B,C and integrate.
anonymous
  • anonymous
can you complete it?
anonymous
  • anonymous
http://prntscr.com/8an7mo this term is much complicated

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks Surjithayer. Your reply was very helpful and I could complete it.
anonymous
  • anonymous
yw
anonymous
  • anonymous
Unable to get correct Answer. Can you further solve To final answer.
anonymous
  • anonymous
https://www.symbolab.com/solver/definite-integral-calculator/%5Cint%5Cfrac%7B2x%7D%7B%5Cleft(x%5E%7B3%7D-1%5Cright)%7D%20dx/?origin=enterkey
anonymous
  • anonymous
A+B=0,B=-A A-C=0 C=A 2=A+A+A \[A=\frac{ 2 }{ 3 },B=-A=-\frac{ 2 }{ 3 },C=A=\frac{ 2 }{ 3 }\]
anonymous
  • anonymous
\[I=\int\limits \frac{ \frac{ 2 }{ 3 } }{ x-1 }dx+\int\limits \frac{ \frac{ -2 }{ 3 }x+\frac{ 2 }{ 3 } }{ x^2+x+1 }dx\] \[=\frac{ 2 }{ 3 }\ln \left( x-1 \right)-\frac{ 1 }{ 3 }\int\limits \frac{ 2x-2 }{ x^2+x+1 }dx\] \[=\frac{ 2 }{ 3 }\ln \left( x-1 \right)-\frac{ 1 }{ 3 }\int\limits \frac{ 2x+1-3 }{ x^2+x+1 }dx\] \[=\frac{ 2 }{ 3 }\ln \left( x-1 \right)-\frac{ 1 }{ 3 }\int\limits \frac{ 2x+1 }{ x^2+x+1 }dx+\int\limits \frac{ 1 }{x^2+x+1 }dx\]
anonymous
  • anonymous
Thanks Surjithayer now it is clear.
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.